Probabilistic Geodesic Models for Regression and Dimensionality Reduction on Riemannian Manifolds | SpringerLink
Skip to main content

Probabilistic Geodesic Models for Regression and Dimensionality Reduction on Riemannian Manifolds

  • Chapter
Riemannian Computing in Computer Vision

Abstract

We present a probabilistic formulation for two closely related statistical models for Riemannian manifold data: geodesic regression and principal geodesic analysis. These models generalize linear regression and principal component analysis to the manifold setting. The foundation of the approach is the particular choice of a Riemannian normal distribution law as the likelihood model. Under this distributional assumption, we show that least-squares fitting of geodesic models is equivalent to maximum-likelihood estimation when the manifold is a homogeneous space. We also provide a method for maximum-likelihood estimation of the dispersion of the noise, as well as a novel method for Monte Carlo sampling from the Riemannian normal distribution. We demonstrate the inference procedures on synthetic sphere data, as well as in a shape analysis of the corpus callosum, represented in Kendall’s shape space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13896
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17371
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buss SR, Fillmore JP (2001) Spherical averages and applications to spherical splines and interpolation. ACM Trans Graph 20(2):95–126

    Article  Google Scholar 

  2. Crouch P, Leite FS (1995) The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J Dyn Control Syst 1(2):177–202

    Article  MATH  Google Scholar 

  3. Davis B, Fletcher PT, Bullitt E, Joshi S (2007) Population shape regression from random design data. In: Proceedings of IEEE international conference on computer vision

    Book  Google Scholar 

  4. Duane S, Kennedy A, Pendleton B, Roweth D (1987) Hybrid Monte Carlo. Phys Lett B 195:216–222

    Article  Google Scholar 

  5. Durrleman S, Pennec X, Trouvé A, Gerig G, Ayache N (2009) Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Medical image computing and computer-assisted intervention, pp 297–304

    Google Scholar 

  6. Edelman A, Arias TA, Smith ST (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353

    Article  MATH  MathSciNet  Google Scholar 

  7. Fletcher PT (2011) Geodesic regression on Riemannian manifolds. In: MICCAI workshop on mathematical foundations of computational anatomy, pp 75–86

    Google Scholar 

  8. Fletcher PT (2012) Geodesic regression and the theory of least squares on Riemannian manifolds. Int J Comput Vis 105:1–15

    Google Scholar 

  9. Fletcher PT, Lu C, Joshi S (2003) Statistics of shape via principal geodesic analysis on Lie groups. In: Computer vision and pattern recognition, pp 95–101

    Google Scholar 

  10. Fletcher PT, Lu C, Pizer SM, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995–1005

    Article  Google Scholar 

  11. Fréchet M (1948) Les éléments aléatoires de nature quelconque dans un espace distancié. Ann Inst Henri Poincaré 10(3):215–310

    Google Scholar 

  12. Grenander U (1963) Probabilities on algebraic structures. Wiley, New York

    MATH  Google Scholar 

  13. Huckemann S, Ziezold H (2006) Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces. Adv Appl Probab 38(2):299–319

    Article  MATH  MathSciNet  Google Scholar 

  14. Jolliffe IT (1986) Principal component analysis, vol 487. Springer, New York

    Book  Google Scholar 

  15. Joshi SC, Hinkle J, Fletcher PT (2014) Intrinsic polynomials for regression on riemannian manifolds. J. Math. Imaging Vision 50(1–2):32–52

    MATH  MathSciNet  Google Scholar 

  16. Jung S, Dryden IL, Marron JS (2012) Analysis of principal nested spheres. Biometrika 99(3):551–568

    Article  MATH  MathSciNet  Google Scholar 

  17. Jupp PE, Kent JT (1987) Fitting smooth paths to spherical data. Appl Stat 36(1):34–46

    Article  MATH  MathSciNet  Google Scholar 

  18. Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30:509–541

    Article  MATH  MathSciNet  Google Scholar 

  19. Kendall WS (1990) Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc Lond Math Soc 3(61):371–406

    Article  MathSciNet  Google Scholar 

  20. Kume A, Dryden IL, Le H (2007) Shape-space smoothing splines for planar landmark data. Biometrika 94(3):513–528

    Article  MATH  MathSciNet  Google Scholar 

  21. Miller M (2004) Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 23:S19–S33

    Article  Google Scholar 

  22. Niethammer M, Huang Y, Viallard F-X (2011) Geodesic regression for image time-series. In: Proceedings of medical image computing and computer assisted intervention

    Book  Google Scholar 

  23. Noakes L, Heinzinger G, Paden B (1989) Cubic splines on curved spaces. IMA J Math Control Inf 6(4):465–473

    Article  MATH  MathSciNet  Google Scholar 

  24. Pennec X (2006) Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J Math Imaging Vision 25(1):127–154

    Article  MathSciNet  Google Scholar 

  25. Roweis S (1998) EM algorithms for PCA and SPCA. In: Advances in neural information processing systems, pp 626–632

    Google Scholar 

  26. Said S, Courty N, Le Bihan N, Sangwine SJ (2007) Exact principal geodesic analysis for data on SO(3). In: Proceedings of the 15th European signal processing conference, pp 1700–1705

    Google Scholar 

  27. Shi X, Styner M, Lieberman J, Ibrahim J, Lin W, Zhu H (2009) Intrinsic regression models for manifold-valued data. J Am Stat Assoc 5762:192–199

    Google Scholar 

  28. Sommer S, Lauze F, Hauberg S, Nielsen M (2010) Manifold valued statistics, exact principal geodesic analysis and the effect of linear approximations. In: Proceedings of the European conference on computer vision, pp 43–56

    Google Scholar 

  29. Su J, Dryden IL, Klassen E, Le H, Srivastava A (2012) Fitting smoothing splines to time-indexed, noisy points on nonlinear manifolds. Image Vis Comput 30(6):428–442

    Article  Google Scholar 

  30. Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat Soc Ser B (Stat Methodol) 61(3):611–622

    Article  MATH  MathSciNet  Google Scholar 

  31. Trouvé A, Vialard F-X (2010) A second-order model for time-dependent data interpolation: Splines on shape spaces. In: MICCAI STIA workshop

    Google Scholar 

  32. Zhang M, Fletcher PT (2013) Probabilistic principal geodesic analysis. In: Neural information processing systems (NIPS)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF CAREER Grant 1054057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fletcher, P.T., Zhang, M. (2016). Probabilistic Geodesic Models for Regression and Dimensionality Reduction on Riemannian Manifolds. In: Turaga, P., Srivastava, A. (eds) Riemannian Computing in Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-22957-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22957-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22956-0

  • Online ISBN: 978-3-319-22957-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics