Abstract
We review the definition of hierarchical spline spaces and their application to finite element methods. Then we discuss how hierarchical techniques can be implemented using the FEMB program package. Subdivision algorithms play a crucial role and lead to a very simple program structure. A numerical example illustrates the substantial gains in accuracy for the adaptive strategy, in particular for higher degree B-splines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Matlab ® is a registered trademark of The MathWorks, Inc., Natick, MA, U.S.A.
References
Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194, 4135–4195 (2005)
Höllig, K.: Finite Element Methods with B-Splines. SIAM, Philadelphia (2003)
Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)
Höllig, K., Hörner, J., Hoffacker, A.: Finite element analysis with B-splines: weighted and isogeometric methods. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 330–350. Springer, Heidelberg (2012)
Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22, 205–212 (1988)
Forsey, D.R., Bartels, R.H.: Surface fitting with hierarchical splines. ACM Trans. Graph. 14, 134–161 (1995)
Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)
Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L. (eds.) Surface Fitting and Multiresolution Methods, pp. 163–172. Vanderbilt University Press, Nashville (1997)
Rabut, C.: Locally tensor product functions. Numer. Algorithm. 39, 325–348 (2005)
Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40, 459–490 (2014)
Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCS. ACM Trans. Graph. 22, 477–484 (2003)
Dokken, T., Lyche, T., Petterson, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)
Mustahsan, M.: Finite element methods with hierarchical WEB-splines. Dissertation, Universität Stuttgart (2011)
Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Meth. Appl. Mech. Eng. 200, 3554–3567 (2011)
Schillinger, D., Rank, E.: An unfitted \(hp\)-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Meth. Appl. Mech. Eng. 200, 3358–3380 (2011)
Bornemann, P.B., Cirak, F.: A subdivision-based implementation of the hierarchical b-spline finite element method. Comput. Meth. Appl. Mech. Eng. 253, 584–598 (2013)
Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Meth. Appl. Mech. Eng. 199, 229–263 (2010)
Dörfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local \(h\)-refinement with T-splines. Comput. Meth. Appl. Mech. Eng. 199, 264–275 (2010)
Scott, M.A., Borden, M.J., Verhoosel, C.V., Sederberg, T.W., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Eng. 88, 126–156 (2011)
Scott, M.A., Li, X., Sederberg, T.W., Hughes, T.J.R.: Local refinement of analysis-suitable T-splines. Comput. Meth. Appl. Mech. Eng. 213–216, 206–222 (2012)
Schillinger, D., Dedè, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Meth. Appl. Mech. Eng. 249–252, 116–150 (2012)
Höllig, K., Hörner, J.: Finite element methods with B-splines: supplementary material (2012). http://www.siam.org/books/fr26/
Höllig, K., Hörner, J.: Approximation and Modeling with B-Splines. SIAM, Philadelphia (2013)
Höllig, K., Hörner, J.: Programming finite element methods with B-splines. To appear in: Comput. Math. Appl., Special Issue on High-Order Finite Element and Isogeometric Methods (HOFEIM 2014) (2015)
Rvachev, V.L., Sheiko, T.I.: R-functions in boundary value problems in mechanics. Appl. Mech. Rev. 48, 151–188 (1995)
Boehm, W.: Inserting new knots into B-spline curves. Comput. Aided Des. 12, 199–201 (1980)
Cohen, E., Lyche, T., Riesenfeld, R.F.: Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Comput. Graph. Image Proc. 14, 87–111 (1980)
Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter, Berlin (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Apprich, C., Höllig, K., Hörner, J., Keller, A., Nava Yazdani, E. (2015). Finite Element Approximation with Hierarchical B-Splines. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2014. Lecture Notes in Computer Science(), vol 9213. Springer, Cham. https://doi.org/10.1007/978-3-319-22804-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-22804-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22803-7
Online ISBN: 978-3-319-22804-4
eBook Packages: Computer ScienceComputer Science (R0)