Finite Element Approximation with Hierarchical B-Splines | SpringerLink
Skip to main content

Finite Element Approximation with Hierarchical B-Splines

  • Conference paper
  • First Online:
Curves and Surfaces (Curves and Surfaces 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9213))

Included in the following conference series:

Abstract

We review the definition of hierarchical spline spaces and their application to finite element methods. Then we discuss how hierarchical techniques can be implemented using the FEMB program package. Subdivision algorithms play a crucial role and lead to a very simple program structure. A numerical example illustrates the substantial gains in accuracy for the adaptive strategy, in particular for higher degree B-splines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Matlab ® is a registered trademark of The MathWorks, Inc., Natick, MA, U.S.A.

References

  1. Höllig, K., Reif, U., Wipper, J.: Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Höllig, K.: Finite Element Methods with B-Splines. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  4. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Book  Google Scholar 

  5. Höllig, K., Hörner, J., Hoffacker, A.: Finite element analysis with B-splines: weighted and isogeometric methods. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 330–350. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22, 205–212 (1988)

    Article  Google Scholar 

  7. Forsey, D.R., Bartels, R.H.: Surface fitting with hierarchical splines. ACM Trans. Graph. 14, 134–161 (1995)

    Article  Google Scholar 

  8. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  9. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L. (eds.) Surface Fitting and Multiresolution Methods, pp. 163–172. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  10. Rabut, C.: Locally tensor product functions. Numer. Algorithm. 39, 325–348 (2005)

    Article  Google Scholar 

  11. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40, 459–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCS. ACM Trans. Graph. 22, 477–484 (2003)

    Article  Google Scholar 

  13. Dokken, T., Lyche, T., Petterson, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)

    Article  MATH  Google Scholar 

  14. Mustahsan, M.: Finite element methods with hierarchical WEB-splines. Dissertation, Universität Stuttgart (2011)

    Google Scholar 

  15. Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Meth. Appl. Mech. Eng. 200, 3554–3567 (2011)

    Article  MATH  Google Scholar 

  16. Schillinger, D., Rank, E.: An unfitted \(hp\)-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Meth. Appl. Mech. Eng. 200, 3358–3380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bornemann, P.B., Cirak, F.: A subdivision-based implementation of the hierarchical b-spline finite element method. Comput. Meth. Appl. Mech. Eng. 253, 584–598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Meth. Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dörfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local \(h\)-refinement with T-splines. Comput. Meth. Appl. Mech. Eng. 199, 264–275 (2010)

    Article  MATH  Google Scholar 

  20. Scott, M.A., Borden, M.J., Verhoosel, C.V., Sederberg, T.W., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Eng. 88, 126–156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Scott, M.A., Li, X., Sederberg, T.W., Hughes, T.J.R.: Local refinement of analysis-suitable T-splines. Comput. Meth. Appl. Mech. Eng. 213–216, 206–222 (2012)

    Article  MathSciNet  Google Scholar 

  22. Schillinger, D., Dedè, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Meth. Appl. Mech. Eng. 249–252, 116–150 (2012)

    Article  Google Scholar 

  23. Höllig, K., Hörner, J.: Finite element methods with B-splines: supplementary material (2012). http://www.siam.org/books/fr26/

  24. Höllig, K., Hörner, J.: Approximation and Modeling with B-Splines. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  25. Höllig, K., Hörner, J.: Programming finite element methods with B-splines. To appear in: Comput. Math. Appl., Special Issue on High-Order Finite Element and Isogeometric Methods (HOFEIM 2014) (2015)

    Google Scholar 

  26. Rvachev, V.L., Sheiko, T.I.: R-functions in boundary value problems in mechanics. Appl. Mech. Rev. 48, 151–188 (1995)

    Article  Google Scholar 

  27. Boehm, W.: Inserting new knots into B-spline curves. Comput. Aided Des. 12, 199–201 (1980)

    Article  Google Scholar 

  28. Cohen, E., Lyche, T., Riesenfeld, R.F.: Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Comput. Graph. Image Proc. 14, 87–111 (1980)

    Article  Google Scholar 

  29. Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter, Berlin (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Höllig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Apprich, C., Höllig, K., Hörner, J., Keller, A., Nava Yazdani, E. (2015). Finite Element Approximation with Hierarchical B-Splines. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2014. Lecture Notes in Computer Science(), vol 9213. Springer, Cham. https://doi.org/10.1007/978-3-319-22804-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22804-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22803-7

  • Online ISBN: 978-3-319-22804-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics