New Fast Algorithms for Elliptic Curve Arithmetic in Affine Coordinates | SpringerLink
Skip to main content

New Fast Algorithms for Elliptic Curve Arithmetic in Affine Coordinates

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9241))

Included in the following conference series:

  • 1080 Accesses

Abstract

We present new algorithms computing 3P and \(2P+Q\) by removing the same part of numerators and denominators of their formulas, given two points P and Q on elliptic curves defined over prime fields and binary fields in affine coordinates. Our algorithms save one or two field multiplications compared with ones presented by Ciet, Joye, Lauter, and Montgomery. Since \(2P+Q\) takes \(\frac{1}{3}\) proportion, 28.5 % proportion, and 25.8 % proportion of all point operations by non-adjacent form, binary/ternary approach and tree approach to compute scalar multiplications respectively, 3P occupies 42.9 % proportion and 33.4 % proportion of all point operations by binary/ternary approach and tree approach to compute scalar multiplications respectively, utilizing our new formulas of \(2P+Q\) and 3P, scalar multiplications by using non-adjacent form, binary/ternary approach and tree approach are improved.

This research is supported in part by National Research Foundation of China under Grant No. 61379137, No. 61272040, and in part by National Basic Research Program of China(973) under Grant No.2013CB338001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  3. Longa, P., Gebotys, C.: Fast multibase methods and other several optimizations for elliptic curve scalar multiplication. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 443–462. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Longa, P., Miri, A.: Fast and flexible elliptic curve point arithmetic over prime fields. IEEE Trans. Comput. 57(3), 289–302 (2008)

    Article  MathSciNet  Google Scholar 

  5. Le, D.P., Nguyen, B.Pb.: Fast point quadupling on elliptic curve. In: SoICT 2012, pp. 218–222. ACM (2012)

    Google Scholar 

  6. Bernstein, D.J., Lange, T.: http://www.hyperelliptic.org/EFD/ (2015)

  7. Reitwiesner, G.W.: Binary arithmetic. Adv. Comput. 1, 231–308 (1960)

    Article  MathSciNet  Google Scholar 

  8. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Dimitrov, V.S., Imbert, L., Mishra, P.K.: The double-base number system and its application to elliptic curve cryptography. Math. Comp. 77(262), 1075–1104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doche, C., Habsieger, L.: A tree-based approach for computing double-base chains. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 433–446. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Méloni, N., Hasan, M.A.: Elliptic curve scalar multiplication combining Yao’s algorithm and double bases. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 304–316. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Méloni, N., Hasan, M.A.: Efficient double bases for scalar multiplication. IEEE Trans. Comput. PP(99), 1 (2015)

    Google Scholar 

  13. Doche, C.: On the enumeration of double-base chains with applications to elliptic curve cryptography. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 297–316. Springer, Heidelberg (2014)

    Google Scholar 

  14. Adikari, J., Dimitrov, V.S., Imbert, L.: Hybrid binary ternary number system for elliptic curve cryptosystems. IEEE Trans. Comput. 60, 254–265 (2011)

    Article  MathSciNet  Google Scholar 

  15. Doche, C., Sutantyo, D.: New and improved methods to analyze and compute double-scalar multiplications. IEEE Trans. Comput. 63(1), 230–242 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Des. Codes Crypt. 39(2), 189–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  18. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)

    Google Scholar 

  19. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast elliptic curve arithmetic and improved weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 343–354. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Dahmen, E., Okeya, K., Schepers, D.: Affine precomputation with sole inversion in elliptic curve cryptography. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 245–258. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Ho Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yu, W., Kim, K.H., Jo, M.S. (2015). New Fast Algorithms for Elliptic Curve Arithmetic in Affine Coordinates. In: Tanaka, K., Suga, Y. (eds) Advances in Information and Computer Security. IWSEC 2015. Lecture Notes in Computer Science(), vol 9241. Springer, Cham. https://doi.org/10.1007/978-3-319-22425-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22425-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22424-4

  • Online ISBN: 978-3-319-22425-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics