State Complexity of Prefix Distance | SpringerLink
Skip to main content

State Complexity of Prefix Distance

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9223))

Included in the following conference series:

Abstract

The prefix distance between strings x and y is the number of symbol occurrences in the strings that do not belong to the longest common prefix of x and y. The suffix and the substring distance are defined analogously in terms of the longest common suffix and longest common substring, respectively, of two strings. We show that the set of strings within prefix distance k from an n state DFA (deterministic finite automaton) language can be recognized by a DFA with \((k+1) \cdot n - \frac{k(k+1)}{2}\) states and this number of states is needed in the worst case. Also we give tight bounds for the nondeterministic state complexity of the set of strings within prefix, suffix or substring distance k from a regular language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apostolico, A.: Maximal words in sequence comparisons based on subword composition. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060, pp. 34–44. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf. Process. Lett. 43, 185–190 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calude, C.S., Salomaa, K., Yu, S.: Additive distances and quasi-distances between words. J. Univ. Comput. Sci. 8(2), 141–152 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of relations. Theor. Comput. Sci. 286(1), 117–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin Heidelberg (2009)

    Book  MATH  Google Scholar 

  6. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review on state complexity of individual operations. Faculdade de Ciencias, Universidade do Porto, Technical report DCC-2011-8 www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf to appear in Computer Science Review

  7. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata – a survey. Inf. Comput. 209, 456–470 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J. Automata Lang. Comb. 9, 293–309 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for computing the edit distance of a regular language via input-altering transducers. CoRR abs/1406.1041 (2014)

    Google Scholar 

  10. Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput. 205, 1307–1316 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between regular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bull. EATCS 111, 70–86 (2013)

    MathSciNet  Google Scholar 

  13. Lothaire, M.: Applied Combinatorics on Words, Ch. 1 Algorithms on Words. Encyclopedia of Mathematics and It’s Applications 105. Cambridge University Press, New York (2005)

    Google Scholar 

  14. Ng, T., Rappaport, D., Salomaa, K.: Quasi-distances and weighted finite automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 209–219. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  15. Povarov, G.: Descriptive complexity of the hamming neighborhood of a regular language. In: Language and Automata Theory and Applications, pp. 509–520 (2007)

    Google Scholar 

  16. Salomaa, K., Schofield, P.: State complexity of additive weighted finite automata. Int. J. Found. Comput. Sci. 18(06), 1407–1416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  18. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer-Verlag, Berlin (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Salomaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ng, T., Rappaport, D., Salomaa, K. (2015). State Complexity of Prefix Distance. In: Drewes, F. (eds) Implementation and Application of Automata. CIAA 2015. Lecture Notes in Computer Science(), vol 9223. Springer, Cham. https://doi.org/10.1007/978-3-319-22360-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22360-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22359-9

  • Online ISBN: 978-3-319-22360-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics