A Relational Database for Human Motion Data | SpringerLink
Skip to main content

A Relational Database for Human Motion Data

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9159))

Included in the following conference series:

Abstract

Motion capture data have been widely used in applications ranging from video games and animations to simulations and virtual environments. Moreover, all data-driven approaches for analysis and synthesis of motions are depending on motion capture data. Although multiple large motion capture data sets are freely available for research, there is no system which can provide a centralized access to all of them in an organized manner. In this paper we show that using a relational database management system (RDBMS) to store data does not only provide such a centralized access to the data, but also allows to include other sensor modalities (e.g. accelerometer data) and various semantic annotations. We present two applications for our system: A motion capture player where motions sequences can be retrieved from large datasets using SQL queries and the automatic construction of statistical models which can further be used for complex motion analysis and motions synthesis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CMU: CMU Motion Capture Database (2003). http://mocap.cs.cmu.edu/

  2. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation Mocap Database HDM05. Technical Report CG-2007-2, Universität Bonn, June 2007

    Google Scholar 

  3. Sigal, L., Balan, A., Black, M.: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision 87(1–2), 4–27 (2010)

    Article  Google Scholar 

  4. Guerra-Filho, G., Biswas, A.: The human motion database: a cognitive and parametric sampling of human motion. In: 2011 IEEE International Conference on Automatic Face Gesture Recognition and Workshops (FG 2011), pp. 103–110, March 2011

    Google Scholar 

  5. Zhou, F., la Torre, F.D., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. on Pattern Analysis and Machine Intelligence 35(3), 582–596 (2013)

    Article  Google Scholar 

  6. Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of human motion. In: 2014 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2014

    Google Scholar 

  7. Krüger, B., Tautges, J., Müller, M., Weber, A.: Multi-mode tensor representation of motion data. Journal of Virtual Reality and Broadcasting 5(5), July 2008

    Google Scholar 

  8. Min, J., Liu, H., Chai, J.: Synthesis and editing of personalized stylistic human motion. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D 2010, New York, NY, USA, pp. 39–46. ACM (2010)

    Google Scholar 

  9. Min, J., Chai, J.: Motion graphs++: A compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. 31(6), 153:1–153:12 (2012)

    Article  Google Scholar 

  10. Baumann, J., Wessel, R., Krüger, B., Weber, A.: Action graph: a versatile data structure for action recognition. In: GRAPP 2014 - International Conference on Computer Graphics Theory and Applications, SCITEPRESS, January 2014

    Google Scholar 

  11. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Transactions on Graphics 23(3), 559–568 (2004). SIGGRAPH 2004

    Article  Google Scholar 

  12. Lin, Y.: Efficient human motion retrieval in large databases. In: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 31–37. ACM (2006)

    Google Scholar 

  13. Basu, S., Shanbhag, S., Chandran, S.: Search and transitioning for motion captured sequences. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 220–223. ACM (2005)

    Google Scholar 

  14. Liu, G., Zhang, J., Wang, W., McMillan, L.: A system for analyzing and indexing human-motion databases. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 924–926. ACM (2005)

    Google Scholar 

  15. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 677–685. ACM (2005)

    Google Scholar 

  16. Forbes, K., Fiume, E.: An efficient search algorithm for motion data using weighted pca. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 67–76. ACM (2005)

    Google Scholar 

  17. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Transactions on Graphics (TOG) 22(3), 402–408 (2003)

    Article  MATH  Google Scholar 

  18. Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2010, pp. 1–10. Eurographics Association, Aire-la-Ville, July 2010

    Google Scholar 

  19. Wang, P., Lau, R.W., Zhang, M., Wang, J., Song, H., Pan, Z.: A real-time database architecture for motion capture data. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1337–1340. ACM (2011)

    Google Scholar 

  20. Awad, C., Courty, N., Gibet, S.: A database architecture for real-time motion retrieval. In: Seventh International Workshop on Content-Based Multimedia Indexing, CBMI 2009, pp. 225–230. IEEE (2009)

    Google Scholar 

  21. Ramanan, D., Forsyth, D.A.: Automatic annotation of everyday movements. In: Neural Information Processing Systems (2003)

    Google Scholar 

  22. Bernard, J., Wilhelm, N., Krüger, B., May, T., Schreck, T., Kohlhammer, J.: Motionexplorer: Exploratory search in human motion capture data based on hierarchical aggregation. IEEE Trans. on Visualization and Computer Graphics (Proc. VAST) (2013)

    Google Scholar 

  23. Lin, E.C.-H.: A research on 3d motion database management and query system based on kinect. In: Park, J.J.J.H., Pan, Y., Kim, C., Yang, Y. (eds.) Future Information Technology - II. LNEE, vol. 329, pp. 29–35. Springer, Heidelberg (2015)

    Google Scholar 

  24. Xsens: Products - Xsens, July 2013. http://www.xsens.com/en/general/mti

  25. Robbins, K.L., Wu, Q.: Development of a computer tool for anthropometric analyses. In: Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS 2003), pp. 347–353. CSREA Press, Las Vegas (2003)

    Google Scholar 

  26. PostgreSQL: Documentation: 9.0: Index Types, July 2013. http://www.postgresql.org/docs/9.0/static/indexes-types.html

  27. PostgreSQL: Documentation: 9.0: EXPLAIN, July 2013. http://www.postgresql.org/docs/9.0/static/sql-explain.html

  28. Barbič, J., Zhao, Y.: ASF/AMC Motion Capture Player, July 2013. http://mocap.cs.cmu.edu/tools.php

  29. Wilhelm, N., Vögele, A., Zsoldos, R., Licka, T., Krüger, B., Bernard, J.: Furyexplorer: visual-interactive exploration of horse motion capture data. In: Visualization and Data Analysis (VDA 2015), February 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaiser Riaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Riaz, Q., Krüger, B., Weber, A. (2015). A Relational Database for Human Motion Data. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9159. Springer, Cham. https://doi.org/10.1007/978-3-319-21413-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21413-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21412-2

  • Online ISBN: 978-3-319-21413-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics