Mining Climate Change Awareness on Twitter: A PageRank Network Analysis Method | SpringerLink
Skip to main content

Mining Climate Change Awareness on Twitter: A PageRank Network Analysis Method

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9155))

Included in the following conference series:

Abstract

Climate change is one of this century’s greatest unbalancing forces that affect our planet. Mining the public awareness is an essential step towards the assessment of current climate policies, dedication of sufficient resources, and construction of new policies for business planning. In this paper, we present an exploratory data mining method that compares two types of networks. The first type is constructed from a set of words collected from a Climate Change corpus, which we consider as ground-truth (i.e., base of comparison). The other type of network is constructed from a reasonably large data set of 72 million tweets; it is used to analyze the public awareness of climate change on Twitter.

The results show that the social-language used on Twitter is more complex than just single word expressions. While the term climate and the hashtag (#climate) scored a lower rank, complex terms such as (“Climate Change”) and (“Climate Engineering”) were more dominant using hashtags. More interestingly, we found the (#ClimateChange) hashtag is the top ranked term, among all other features, used on Twitter to signal climate familiarity expressions. This is indeed striking evidence that demonstrates a great deal of awareness and provides hope for a better future dealing with Climate Change issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB 1994, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994). http://dl.acm.org/citation.cfm?id=645920.672836

  2. Aizawa, A.: An information-theoretic perspective of tfidf measures. Information Processing and Management 39(1), 45–65 (2003). http://www.sciencedirect.com/science/article/pii/S0306457302000213

    Article  MATH  MathSciNet  Google Scholar 

  3. Allesina, S., Pascual, M.: Googling food webs: Can an eigenvector measure species’ importance for coextinctions? PLoS Comput Biol 5(9), e10004942009 (2009). http://dx.doi.org/10.1371%2Fjournal.pcbi.1000494

  4. Bekkerman, R., Allan, J.: Using bigrams in text categorization (2003)

    Google Scholar 

  5. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science 2(1), 1–8 (2011)

    Article  Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  7. Callaway, J.M.: Adaptation benefits and costs: are they important in the global policy picture and how can we estimate them? Global Environmental Change 14(3), 273–282 (2004). http://www.sciencedirect.com/science/article/pii/S0959378004000366. the Benefits of Climate Policy

    Article  Google Scholar 

  8. Conover, M., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on twitter. In: ICWSM (2011)

    Google Scholar 

  9. Curry, T.E.: Public awareness of carbon capture and storage: a survey of attitudes toward climate change mitigation. Ph.D. thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  10. De Deyne, S., Storms, G.: Word associations: Network and semantic properties. Behavior Research Methods 40(1), 213–231 (2008). http://dx.doi.org/10.3758/BRM.40.1.213

    Article  Google Scholar 

  11. Ding, Y.: Topic-based pagerank on author cocitation networks. J. Am. Soc. Inf. Sci. Technol. 62(3), 449–466 (2011). http://dx.doi.org/10.1002/asi.21467

    Google Scholar 

  12. Ding, Y., Yan, E., Frazho, A., Caverlee, J.: Pagerank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 60(11), 2229–2243 (2009). http://dx.doi.org/10.1002/asi.v60:11

    Article  Google Scholar 

  13. Do, T.D., Hui, S.C., Fong, A.C.M.: Associative feature selection for text mining. International Journal of Information Technology 12(4) (2006)

    Google Scholar 

  14. Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: Songs, blogs, and presidents. Journal of Happiness Studies 11(4), 441–456 (2010)

    Article  Google Scholar 

  15. Esbjörn-Hargens, S.: An ontology of climate change. Journal of Integral Theory and Practice 5(1), 143–174 (2010)

    Google Scholar 

  16. Forman, G.: An extensive empirical study of feature selection metrics for text classification. The Journal of machine learning research 3, 1289–1305 (2003)

    MATH  Google Scholar 

  17. Hamed, A.A.: An Exploratory Analysis of Twitter Keyword-Hashtag Networks and Their Knowledge Discover Applications. Ph.d. dissertation, University of Vermont (2014)

    Google Scholar 

  18. Hamed, A.A., Wu, X.: Does social media big data make the world smaller? an exploratory analysis of keyword-hashtag networks. In: IEEE BigData Congress (2014)

    Google Scholar 

  19. Hamed, A.A., Wu, X., Fandy, T.: Mining patterns in big data k-h networks. In: ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2014, Doha, Qatar (2014), November 10–13, 2014

    Google Scholar 

  20. Hamed, A.A., Wu, X., Fingar, J.: A twitter-based smoking cessation recruitment system. In: ASONAM (2013)

    Google Scholar 

  21. Hamed, A.A., Wu, X., Rubin, A.: A twitter recruitment intelligent system: association rule mining for smoking cessation. Social Netw. Analys. Mining 4(1) (2014). http://dx.doi.org/10.1007/s13278-014-0212-6

  22. Hearst, M.A.: Untangling text data mining. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, pp. 3–10. Association for Computational Linguistics (1999)

    Google Scholar 

  23. Jensen, L.J., Saric, J., Bork, P.: Literature mining for the biologist: from information retrieval to biological discovery. Nature reviews genetics 7(2), 119–129 (2006)

    Article  Google Scholar 

  24. Jing, L.P., Huang, H.K., Shi, H.B.: Improved feature selection approach tfidf in text mining. In: Proceedings of 2002 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 944–946. IEEE (2002)

    Google Scholar 

  25. Kam, X.N.C., Stoyneshka, I., Tornyova, L., Fodor, J.D., Sakas, W.G.: Bigrams and the richness of the stimulus. Cognitive Science 32(4), 771–787 (2008). http://dx.doi.org/10.1080/03640210802067053

    Article  Google Scholar 

  26. Kolchinsky, A., Abi-Haidar, A., Kaur, J., Hamed, A.A., Rocha, L.M.: Classification of protein-protein interaction full-text documents using text and citation network features. IEEE/ACM Trans. Comput. Biol. Bioinformatics 7(3), 400–411 (2010). http://dx.doi.org/10.1109/TCBB.2010.55

    Article  Google Scholar 

  27. Levenbach, G.J.: A dutch bigram network. Word Ways 21(11) (1998). http://digitalcommons.butler.edu/wordways/vol21/iss3/11

  28. Lorenzoni, I., Nicholson-Cole, S., Whitmarsh, L.: Barriers perceived to engaging with climate change among the uk public and their policy implications. Global environmental change 17(3), 445–459 (2007)

    Article  Google Scholar 

  29. Macintyre, G., Jimeno Yepes, A., Ong, C.S., Verspoor, K.: Associating disease-related genetic variants in intergenic regions to the genes they impact. PeerJ 2, e639 (2014). https://dx.doi.org/10.7717/peerj.639

    Article  Google Scholar 

  30. Marsi, E., Oztürk, P., Aamot, E., Sizov, G., Ardelan, M.V.: Towards text mining in climate science: extraction of quantitative variables and their relations. In: Proceedings of the Fourth Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing (2014)

    Google Scholar 

  31. McMahn, J.: Forget global warming and climate change, call it ’climate disruption’, March 2015

    Google Scholar 

  32. Mihalcea, R., Tarau, P., Figa, E.: Pagerank on semantic networks, with application to word sense disambiguation. In: Proceedings of the 20th International Conference on Computational Linguistics, COLING 2004. Association for Computational Linguistics, Stroudsburg (2004). http://dx.doi.org/10.3115/1220355.1220517

  33. Neil Adger, W., Arnell, N.W., Tompkins, E.L.: Successful adaptation to climate change across scales. Global environmental change 15(2), 77–86 (2005)

    Article  Google Scholar 

  34. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and trends in information retrieval 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  35. Pardalos, P., Boginski, V.L., Vazacopoulos, A.: Data mining in biomedicine, vol. 7. Springer (2008)

    Google Scholar 

  36. Radev, D.R., Jing, H., Sty, M., Tam, D.: Centroid-based summarization of multiple documents. Information Processing and Management 40(6), 919–938 (2004). http://www.sciencedirect.com/science/article/pii/S0306457303000955

    Article  MATH  Google Scholar 

  37. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988). http://www.sciencedirect.com/science/article/pii/0306457388900210

    Article  Google Scholar 

  38. Sampei, Y., Aoyagi-Usui, M.: Mass-media coverage, its influence on public awareness of climate-change issues, and implications for japans national campaign to reduce greenhouse gas emissions. Global Environmental Change 19(2), 203–212 (2009)

    Article  Google Scholar 

  39. Sebastiani, F.: Machine learning in automated text categorization. ACM computing surveys (CSUR) 34(1), 1–47 (2002)

    Article  Google Scholar 

  40. Semenza, J.C., Hall, D.E., Wilson, D.J., Bontempo, B.D., Sailor, D.J., George, L.A.: Public perception of climate change: voluntary mitigation and barriers to behavior change. American journal of preventive medicine 35(5), 479–487 (2008)

    Article  Google Scholar 

  41. Signorini, A., Segre, A.M., Polgreen, P.M.: The use of twitter to track levels of disease activity and public concern in the us during the influenza a h1n1 pandemic. PloS one 6(5), e19467 (2011)

    Article  Google Scholar 

  42. Tan, C.M., Wang, Y.F., Lee, C.D.: The use of bigrams to enhance text categorization. Inf. Process. Manage. 38(4), 529–546 (2002). http://dx.doi.org/10.1016/S0306-4573(01)00045-0

    Article  MATH  Google Scholar 

  43. Whitmarsh, L.: Behavioural responses to climate change: Asymmetry of intentions and impacts. Journal of Environmental Psychology 29(1), 13–23 (2009)

    Article  Google Scholar 

  44. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007). http://dx.doi.org/10.1007/s10115-007-0114-2

    Article  Google Scholar 

  45. Xie, X., Jin, J., Mao, Y.: Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks. BMC Evolutionary Biology 11(1), 242 (2011). http://dx.doi.org/10.1186/1471-2148-11-242

    Article  Google Scholar 

  46. Ye, N., et al.: The handbook of data mining, vol. 24. Lawrence Erlbaum Associates Mahwah, NJ (2003)

    Google Scholar 

  47. Zhang, W., Yoshida, T., Tang, X.: A comparative study of tf*idf, LSI and multi-words for text classification. Expert Systems with Applications 38(3), 2758–2765 (2011). http://www.sciencedirect.com/science/article/pii/S0957417410008626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdeen Hamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hamed, A.A., Zia, A. (2015). Mining Climate Change Awareness on Twitter: A PageRank Network Analysis Method. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9155. Springer, Cham. https://doi.org/10.1007/978-3-319-21404-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21404-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21403-0

  • Online ISBN: 978-3-319-21404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics