Abstract
A method for illumination robust facial feature detection on frontal images of the human face is proposed. Illumination robust features are produced from weighted contributions of the texture and illumination components of an image where the illumination is estimated via Bayesian least-squares minimization with the required posterior probability inferred using an adaptive Monte-Carlo sampling approach. This estimate is used to decouple the illumination and texture components, from which Haar-like features are extracted. A weighted aggregate of each component’s features is then compared with a cascade of pre-trained classifiers for the face, eyes, nose, and mouth. Experimental results against the Yale Face Database B suggest higher sensitivity and \(F_1\) score values than current methods while maintaining comparable specificity and accuracy in the presence of non-ideal illumination conditions.
We would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs Program, and the Ontario Ministry of Research and Innovation for their sponsorship of this research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intel. 28(12), 2037–2041 (2006)
Bartlett, M.S., Littlewort, G., Fasel, I., Movellan, J.R.: Real time face detection and facial expression recognition: Development and applications to human computer interaction. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2003, vol. 5, pp. 53–53. IEEE (2003)
Bradski, G.: Dr. Dobb’s Journal of Software Tools (2000)
Cristinacce, D., Cootes, T.F.: Facial feature detection using adaboost with shape constraints. In: BMVC, pp. 1–10. British Machine Vision Association (2003)
Elad, M.: Retinex by two bilateral filters. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 217–229. Springer, Heidelberg (2005)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
Frischholz, R.W., Dieckmann, U.: Biold: a multimodal biometric identification system. Computer 33(2), 64–68 (2000)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)
Gourier, N., Hall, D., Crowley, J.L.: Facial features detection robust to pose, illumination and identity. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 617–622. IEEE (2004)
Hadid, A., Heikkila, J., Silvén, O., Pietikainen, M.: Face and eye detection for person authentication in mobile phones. In: First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2007, pp. 101–108. IEEE (2007)
Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II–797. IEEE (2004)
Hu, W.C., Yang, C.Y., Huang, D.Y., Huang, C.H.: Feature-based face detection against skin-color like backgrounds with varying illumination. J. Inf. Hiding Multimedia Signal Proces. 2(2), 123–132 (2011)
Huang, D., Ardabilian, M., Wang, Y., Chen, L.: 3-D face recognition using elbp-based facial description and local feature hybrid matching. IEEE Trans. Inf. Forensics and Secur. 7(5), 1551–1565 (2012)
Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Proces. 6(3), 451–462 (1997)
Lui, D., Modhafar, A., Glaister, J., Wong, A., Haider, M.: Monte Carlo bias field correction in endorectal diffusion imaging. IEEE Trans. Bio-Med. Eng. 61(2), 368–380 (2014)
Morimoto, C.H., Mimica, M.R.: Eye gaze tracking techniques for interactive applications. Comput. Vis. Image Underst. 98(1), 4–24 (2005)
Naruniec, J.: A survey on facial features detection. Int. J. Electr. Telecommun. 56(3), 267–272 (2010)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recog. 29(1), 51–59 (1996)
Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Sixth international Conference on Computer Vision, pp. 555–562. IEEE (1998)
Roy, A., Marcel, S.: Haar local binary pattern feature for fast illumination invariant face detection. In: British Machine Vision Conference 2009. No. LIDIAP-CONF-2009-048 (2009)
Shan, C., Gong, S., McOwan, P.W.: Robust facial expression recognition using local binary patterns. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. II–370. IEEE (2005)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–511. IEEE (2001)
Vukadinovic, D., Pantic, M.: Fully automatic facial feature point detection using gabor feature based boosted classifiers. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1692–1698. IEEE (2005)
Wilson, P.I., Fernandez, J.: Facial feature detection using haar classifiers. J. Comput. Sci. Coll. 21(4), 127–133 (2006)
Wong, A., Clausi, D.A., Fieguth, P.: Adaptive monte carlo retinex method for illumination and reflectance separation and color image enhancement. In: Canadian Conference on Computer and Robot Vision, CRV 2009, pp. 108–115. IEEE (2009)
Zhang, H., Gao, W., Chen, X., Zhao, D.: Object detection using spatial histogram features. Image Vis. Comput. 24(4), 327–341 (2006)
Zhang, L., Li, S.Z., Yuan, X., Xiang, S.: Real-time object classification in video surveillance based on appearance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chwyl, B., Wong, A., Clausi, D.A. (2015). Illumination Robust Facial Feature Detection via Decoupled Illumination and Texture Features. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-20801-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20800-8
Online ISBN: 978-3-319-20801-5
eBook Packages: Computer ScienceComputer Science (R0)