A Neighbourhood Based Hybrid Genetic Search Model for Feature Selection | SpringerLink
Skip to main content

A Neighbourhood Based Hybrid Genetic Search Model for Feature Selection

  • Conference paper
  • First Online:
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8947))

Included in the following conference series:

  • 1661 Accesses

Abstract

The paper presents a hybrid genetic search model (HGSM) with novel neighbourhood based uniform local search to select the subset of salient features removing redundant information from the universe of discourse. The method uses least square regression error as the fitness function for selecting the most feasible set of features from a large number of feature set. Proposed work is validated using our simulated character dataset and some real world datasets available in UCI Machine learning repository and performance comparison of proposed method with some other state of art feature selection methods are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(12), 245–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(12), 273–324 (1997)

    Article  MATH  Google Scholar 

  3. Dy, J.G., Brodley, C.E., Kak, A.L., Broderick, S., Aisen, A.M.: Unsupervised feature selection applied to content-based retrieval of lung images. IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 373–378 (2003)

    Article  Google Scholar 

  4. Yu, L., Huan, L.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)

    MATH  Google Scholar 

  5. Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering Goldberg. Studies in fuzziness and Soft Computing. Springer, New York (2004)

    Google Scholar 

  6. Dorigo, M., ed.: Ant colony optimization and swarm intelligence. In: 5th International Workshop, ANTS 2006, vol. 4150 (2006)

    Google Scholar 

  7. Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 661–680 (1983)

    Article  MathSciNet  Google Scholar 

  9. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)

    Article  Google Scholar 

  10. Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm optimization-based selected features. Int. J. Signal Process. Image Process. Pattern Recogn. 2(2), 51–65 (2009)

    Google Scholar 

  11. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)

    Article  Google Scholar 

  12. Agrafiotis, D.K., Cedeno, W.: Feature selection for structure-activity correlation using binary particle swarms. J. Med. Chem. 45(5), 1098–1107 (2002)

    Article  Google Scholar 

  13. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

    Article  MATH  Google Scholar 

  14. Huang, C.L., Dun, J.F.: A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)

    Article  Google Scholar 

  15. Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J.: Gene clustering using self-organizing maps and particle swarm optimization. In: Parallel and Distributed Processing Symposium, vol. 10. IEEE (2003)

    Google Scholar 

  16. Pedrycz, W., Park, B.-J., Pizzi, N.J.: Identifying core sets of discriminatory features using particle swarm optimization. Expert Syst. Appl. 36(3), 4610–4616 (2009)

    Article  Google Scholar 

  17. Knowles, J.D., Corne, D.W.: M-PAES: A memetic algorithm for multiobjective optimization. Evolutionary Computation. In: Proceedings of the 2000 Congress, vol. 1. IEEE (2000)

    Google Scholar 

  18. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  19. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  MathSciNet  Google Scholar 

  20. Coello, C.A.C., Lamont, G.B., van Veldhuisen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Aarts, E.H.L., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  22. Kim, K.W., Yun, Y.S., Yoon, J.M., Gen, M., Yamazaki, G.: Hybrid genetic algorithm with adaptive abilities for resource constrained multiple project scheduling. Comput. Ind. 56(2), 143–160 (2005)

    Article  Google Scholar 

  23. Diaz, C.A.D., Muro, A.G., Pérez, R.B., Morales, E.V.: A hybrid model of genetic algorithm with local search to discover linguistic data summaries from creep data. Expert Syst. Appl. 41, 2035–2042 (2014)

    Article  Google Scholar 

  24. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. 28(3), 392–403 (1998)

    Article  Google Scholar 

  25. Sharma, S., Mathew, T.V.: Multiobjective network design for emission and travel-time trade-off for a sustainable large urban transportation network. Environ. Plann. B Plann. Des. 38(3), 520–538 (2011)

    Article  Google Scholar 

  26. Ramsey, J.B.: Tests for specification errors in classical linear least square regression analysis. J. Royal Stat. Soc. Ser. B (Methodol.) 31, 350–371 (1969)

    MathSciNet  MATH  Google Scholar 

  27. Pati, S.K., Das, A.K., Ghosh, A.: Gene selection using multi-objective genetic algorithm integrating cellular automata and rough set theory. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds.) SEMCCO 2013, Part II. LNCS, vol. 8298, pp. 144–155. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Norton, G.H., Salagean, A.: On the hamming distance of linear codes over a finite chain ring. IEEE Trans. Inf. Theory 46(3), 1060–1067 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151(1), 155–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hall, M.A.: Correlation-based feature selection for machine learning. Diss. The University of Waikato (1999)

    Google Scholar 

  31. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, US, London (2010)

    Google Scholar 

  32. Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  33. Albukhanajer, W.A., Jin, Y., Briffa, J.A.: Neural network ensembles for image identification using pareto-optimal features. In: IEEE Congress on Evolutionary Computation CEC (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arka Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Das, S., Ghosh, A., Das, A.K. (2015). A Neighbourhood Based Hybrid Genetic Search Model for Feature Selection. In: Panigrahi, B., Suganthan, P., Das, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science(), vol 8947. Springer, Cham. https://doi.org/10.1007/978-3-319-20294-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20294-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20293-8

  • Online ISBN: 978-3-319-20294-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics