Generic Transformation to Strongly Existentially Unforgeable Signature Schemes with Continuous Leakage Resiliency | SpringerLink
Skip to main content

Generic Transformation to Strongly Existentially Unforgeable Signature Schemes with Continuous Leakage Resiliency

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9144))

Included in the following conference series:

Abstract

In ProvSec 2014, Wang and Tanaka proposed a transformation which converts weakly existentially unforgeable (wEUF) signature schemes into strongly existentially unforgeable (sEUF) ones in the bounded leakage model. To obtain the construction, they combined the leakage resilient (LR) chameleon hash functions with the Generalised Boneh-Shen-Waters (GBSW) transformation proposed by Steinfeld, Pieprzyk, and Wang. However, their transformation cannot be used in a more realistic model called continual leakage model since the secret key of the LR chameleon hash functions cannot be updated.

In this paper, we propose a transformation which can convert wEUF signature schemes into sEUF ones in the continual leakage model. To achieve our goal, we give a new definition of continuous leakage resilient (CLR) chameleon hash function and construct it based on the CLR signature scheme proposed by Malkin, Teranishi, Vahlis, and Yung. Although the CLR chameleon hash functions satisfy the property of strong collision-resistance, because of the existence of the updating algorithm, an adversary may find the kind of collisions such that messages are the same but randomizers are different. From this fact, we cannot combine our chameleon hash functions with the GBSW transformation directly, or the sEUF security of the transformed signature schemes cannot be achieved. To solve this problem, we improve the original GBSW transformation by making use of the Groth-Sahai proof system and then combine it with our CLR chameleon hash functions.

Department of Mathematical and Computing Sciences, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, and CREST, JST, W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. Supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (A) No.24240001 and (C) No.23500010, a grant of I-System Co. Ltd., and NTT Secure Platform Laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417 (2005). http://eprint.iacr.org/

  4. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 501–510, October 2010

    Google Scholar 

  9. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)

    Google Scholar 

  10. Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky devices. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 688–697, October 2011

    Google Scholar 

  11. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS 2010, pp. 511–520. IEEE Computer Society, Washington (2010)

    Google Scholar 

  12. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Galbraith, S.D., Rotger, V.: Easy decision-diffie-hellman groups. LMS Journal of Computation and Mathematics 7(2004) (2004)

    Google Scholar 

  14. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Groth, J.: Homomorphic trapdoor commitments to group elements. IACR Cryptology ePrint Archive 2009, 7 (2009)

    Google Scholar 

  16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. The InternetSociety (2000)

    Google Scholar 

  19. Lewko, A., Lewko, M., Waters, B.: How to leak on key updates. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 725–734. ACM, New York (2011)

    Google Scholar 

  20. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Scott, M.: Authenticated id-based key exchange and remote log-in with simple token and pin number. Cryptology ePrint Archive, Report 2002/164 (2002). http://eprint.iacr.org/

  22. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Teranishi, I., Oyama, T., Ogata, W.: General conversion for obtaining strongly existentially unforgeable signatures. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 191–205. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 195–210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable signature schemes with leakage resiliency. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 117–129. Springer, Heidelberg (2014)

    Google Scholar 

  27. Wang, Y., Tanaka, K.: Strongly simulation-extractable leakage-resilient NIZK. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 66–81. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Tanaka, K. (2015). Generic Transformation to Strongly Existentially Unforgeable Signature Schemes with Continuous Leakage Resiliency. In: Foo, E., Stebila, D. (eds) Information Security and Privacy. ACISP 2015. Lecture Notes in Computer Science(), vol 9144. Springer, Cham. https://doi.org/10.1007/978-3-319-19962-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19962-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19961-0

  • Online ISBN: 978-3-319-19962-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics