Abstract
In ProvSec 2014, Wang and Tanaka proposed a transformation which converts weakly existentially unforgeable (wEUF) signature schemes into strongly existentially unforgeable (sEUF) ones in the bounded leakage model. To obtain the construction, they combined the leakage resilient (LR) chameleon hash functions with the Generalised Boneh-Shen-Waters (GBSW) transformation proposed by Steinfeld, Pieprzyk, and Wang. However, their transformation cannot be used in a more realistic model called continual leakage model since the secret key of the LR chameleon hash functions cannot be updated.
In this paper, we propose a transformation which can convert wEUF signature schemes into sEUF ones in the continual leakage model. To achieve our goal, we give a new definition of continuous leakage resilient (CLR) chameleon hash function and construct it based on the CLR signature scheme proposed by Malkin, Teranishi, Vahlis, and Yung. Although the CLR chameleon hash functions satisfy the property of strong collision-resistance, because of the existence of the updating algorithm, an adversary may find the kind of collisions such that messages are the same but randomizers are different. From this fact, we cannot combine our chameleon hash functions with the GBSW transformation directly, or the sEUF security of the transformed signature schemes cannot be achieved. To solve this problem, we improve the original GBSW transformation by making use of the Groth-Sahai proof system and then combine it with our CLR chameleon hash functions.
Department of Mathematical and Computing Sciences, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, and CREST, JST, W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. Supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (A) No.24240001 and (C) No.23500010, a grant of I-System Co. Ltd., and NTT Secure Platform Laboratories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)
Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)
Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417 (2005). http://eprint.iacr.org/
Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)
Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)
Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 501–510, October 2010
Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)
Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky devices. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 688–697, October 2011
Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS 2010, pp. 511–520. IEEE Computer Society, Washington (2010)
Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)
Galbraith, S.D., Rotger, V.: Easy decision-diffie-hellman groups. LMS Journal of Computation and Mathematics 7(2004) (2004)
Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)
Groth, J.: Homomorphic trapdoor commitments to group elements. IACR Cryptology ePrint Archive 2009, 7 (2009)
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)
Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17. Springer, Heidelberg (2007)
Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. The InternetSociety (2000)
Lewko, A., Lewko, M., Waters, B.: How to leak on key updates. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 725–734. ACM, New York (2011)
Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011)
Scott, M.: Authenticated id-based key exchange and remote log-in with simple token and pin number. Cryptology ePrint Archive, Report 2002/164 (2002). http://eprint.iacr.org/
Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)
Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)
Teranishi, I., Oyama, T., Ogata, W.: General conversion for obtaining strongly existentially unforgeable signatures. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 191–205. Springer, Heidelberg (2006)
Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 195–210. Springer, Heidelberg (2001)
Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable signature schemes with leakage resiliency. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 117–129. Springer, Heidelberg (2014)
Wang, Y., Tanaka, K.: Strongly simulation-extractable leakage-resilient NIZK. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 66–81. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, Y., Tanaka, K. (2015). Generic Transformation to Strongly Existentially Unforgeable Signature Schemes with Continuous Leakage Resiliency. In: Foo, E., Stebila, D. (eds) Information Security and Privacy. ACISP 2015. Lecture Notes in Computer Science(), vol 9144. Springer, Cham. https://doi.org/10.1007/978-3-319-19962-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-19962-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19961-0
Online ISBN: 978-3-319-19962-7
eBook Packages: Computer ScienceComputer Science (R0)