Abstract
State space planning algorithms have been considered as one of the main classical planning techniques to solve classical planning problems since 1960. In this paper, we show that Transaction Logic is an appropriate language and framework to study and compare these planning algorithms, which enables one to have more efficient planners in logic programming frameworks. Specifically, we take \(\textit{STRIPS}\) planning and forward state space planning algorithms, and show that the specification of these algorithms in Transaction Logic lets one implement complicated planning algorithms in declarative programming languages (e.g. Prolog). We first provide a formal representation of these planning algorithms in Transaction Logic, which can be used to automatically translate \( \textit{STRIPS}\) planning problems in PDDL to Transaction Logic rules. Then, we use the resulting Transaction Logic rules to solve planning problems and compare the performance of those algorithms in our simple interpreter implemented in XSB Prolog. We use several case studies to show how the linear \( \textit{STRIPS}\) planning algorithm is faster than forward state space search. Our experiments highlight the fact that a planner implemented by logic programming framework can become faster if an appropriate planning algorithm is applied.
This work was supported, in part, by the NSF grant 0964196.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bacchus, F.: AIPS-00 planning competition, May 2000. http://www.cs.toronto.edu/aips2000
Barták, R., Toropila, D.: Solving sequential planning problems via constraint satisfaction. Fundam. Inform. 99(2), 125–145 (2010). http://dx.doi.org/10.3233/FI-2010-242
Barták, R., Zhou, N.-F.: On modeling planning problems: experience from the petrobras challenge. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 466–477. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-45111-9_40
Barták, R., Zhou, N.: Using tabled logic programming to solve the petrobras planning problem. TPLP 14(4–5), 697–710 (2014). http://dx.doi.org/10.1017/S1471068414000295
Basseda, R., Kifer, M., Bonner, A.J.: Planning with transaction logic. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 29–44. Springer, Heidelberg (2014)
Bibel, W.: A deductive solution for plan generation. New Generation Computing 4(2), 115–132 (1986)
Bibel, W.: A deductive solution for plan generation. In: Schmidt, J.W., Thanos, C. (eds.) Foundations of Knowledge Base Management. Information Systems, pp. 453–473. Springer, Heidelberg (1989)
Bibel, W., del Cerro, L.F., Fronhfer, B., Herzig, A.: Plan generation by linear proofs: on semantics. In: Metzing, D. (ed.) GWAI-89 13th German Workshop on Artificial Intelligence, Informatik-Fachberichte, vol. 216, pp. 49–62. Springer, Heidelberg (1989)
Bonner, A., Kifer, M.: Transaction logic programming. In: Int’l Conference on Logic Programming, pp. 257–282. MIT Press, Budapest, June 1993
Bonner, A.J., Kifer, M.: Applications of transaction logic to knowledge representation. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL1994. LNCS, vol. 827, pp. 67–81. Springer, Heidelberg (1994)
Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative and procedural knowledge). Tech. Rep. CSRI-323, University of Toronto, November 1995. http://www.cs.toronto.edu/~bonner/transaction-logic.html
Bonner, A., Kifer, M.: Concurrency and communication in transaction logic. In: Joint Int’l Conference and Symposium on Logic Programming, pp. 142–156. MIT Press, Bonn, September 1996
Bonner, A., Kifer, M.: A logic for programming database transactions. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, ch. 5, pp. 117–166. Kluwer Academic Publishers, March 1998
Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Computer Science 133 (1994)
Cresswell, S., Smaill, A., Richardson, J.: Deductive synthesis of recursive plans in linear logic. In: Biundo, S., Fox, M. (eds.) Recent Advances in AI Planning. Lecture Notes in Computer Science, vol. 1809, pp. 252–264. Springer, Heidelberg (2000)
Dovier, A., Formisano, A., Pontelli, E.: Perspectives on logic-based approaches for reasoning about actions and change. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 259–279. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-20832-4_17
Ernst, M.D., Millstein, T.D., Weld, D.S.: Automatic sat-compilation of planning problems. In: Proceedings of the Fifteenth International Joint Conference on Artifical Intelligence, IJCAI 1997, vol. 2, pp. 1169–1176. Morgan Kaufmann Publishers Inc., San Francisco (1997). http://dl.acm.org/citation.cfm?id=1622270.1622325
Erol, K., Hendler, J.A., Nau, D.S.: UMCP: a sound and complete procedure for hierarchical task-network planning. In: Hammond, K.J. (ed.) AAAI 1994, pp. 249–254. University of Chicago, Chicago (1994). http://www.aaai.org/Library/AIPS/1994/aips94-042.php
Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 2(34), 189–208 (1971)
Fodor, P., Kifer, M.: Tabling for transaction logic. In: Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, PPDP 2010, pp. 199–208. ACM, New York (2010)
Fodor, P., Kifer, M.: Transaction logic with defaults and argumentation theories. In: Gallagher, J.P., Gelfond, M. (eds.) Technical Communications of the 27th International Conference on Logic Programming, ICLP 2011, July 6–10, 2011, Lexington, Kentucky, USA. LIPIcs, vol. 11, pp. 162–174. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011). http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.162
Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains. J. Artif. Int. Res. 20(1), 61–124 (2003). http://dl.acm.org/citation.cfm?id=1622452.1622454
Gebser, M., Kaminski, R., Knecht, M., Schaub, T.: plasp: A prototype for PDDL-based planning in ASP. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 358–363. Springer, Heidelberg (2011)
Gebser, M., Kaufmann, R., Schaub, T.: Gearing up for effective ASP planning. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 296–310. Springer, Heidelberg (2012). http://dl.acm.org/citation.cfm?id=2363344.2363364
Geffner, H.: Pddl 2.1: Representation vs. computation. J. Artif. Int. Res. 20(1), 139–144 (2003). http://dl.acm.org/citation.cfm?id=1622452.1622457
Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210 (1998). http://www.ep.liu.se/ej/etai/1998/007/
Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif. Intell. 173(5–6), 619–668 (2009). http://dx.doi.org/10.1016/j.artint.2008.10.012
Ghallab, M., Isi, C.K., Penberthy, S., Smith, D.E., Sun, Y., Weld, D.: PDDL - The Planning Domain Definition Language. Tech. rep., CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
Giunchiglia, E., Massarotto, A., Sebastiani, R.: Act, and the rest will follow: exploiting determinism in planning as satisfiability. In: Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI 1998/IAAI 1998, pp. 948–953. American Association for Artificial Intelligence, Menlo Park (1998). http://dl.acm.org/citation.cfm?id=295240.295931
Green, C.: Application of theorem proving to problem solving. In: Proceedings of the 1st International Joint Conference on Artificial Intelligence, IJCAI 1969, pp. 219–239. Morgan Kaufmann Publishers Inc., San Francisco (1969). http://dl.acm.org/citation.cfm?id=1624562.1624585
Gregory, P., Long, D., Fox, M.: Constraint based planning with composable substate graphs. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of ECAI 2010–19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16–20, 2010. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 453–458. IOS Press (2010). http://dx.doi.org/10.3233/978-1-60750-606-5-453
Hölldobler, S., Schneeberger, J.: A new deductive approach to planning. New Generation Computing 8(3), 225–244 (1990)
Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H. (ed.) Artificial Intelligence and Applications, pp. 387–393. IASTED/ACTA Press (2005)
Kahramanogullari, O.: On linear logic planning and concurrency. Information and Computation 207(11), 1229–1258 (2009). special Issue: 2nd International Conference on Language and Automata Theory and Applications (LATA 2008)
Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial Intelligence, ECAI 1992, pp. 359–363. John Wiley & Sons Inc., New York (1992). http://dl.acm.org/citation.cfm?id=145448.146725
Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(12), 39–54 (2002). http://www.sciencedirect.com/science/article/pii/S0004370202001868. knowledge Representation and Logic Programming
McDermott, D.V.: The 1998 AI planning systems competition. AI Magazine 21(2), 35–55 (2000). http://www.aaai.org/ojs/index.php/aimagazine/article/view/1506
McDermott, D.V.: PDDL2.1 - the art of the possible? commentary on fox and long. J. Artif. Intell. Res. (JAIR) 20, 145–148 (2003). http://dx.doi.org/10.1613/jair.1996
Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)
Nilsson, N.: Principles of Artificial Intelligence. Tioga Publ. Co., Paolo Alto (1980)
Pednault, E.P.D.: Adl: Exploring the middle ground between strips and the situation calculus. In: Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning, pp. 324–332. Morgan Kaufmann Publishers Inc., San Francisco (1989). http://dl.acm.org/citation.cfm?id=112922.112954
Rezk, M., Kifer, M.: Transaction logic with partially defined actions. J. Data Semantics 1(2), 99–131 (2012)
Smith, D.E.: The case for durative actions: A commentary on PDDL2.1. J. Artif. Intell. Res. (JAIR) 20, 149–154 (2003). http://dx.doi.org/10.1613/jair.1997
Son, T.C., Baral, C., Tran, N., Mcilraith, S.: Domain-dependent knowledge in answer set planning. ACM Trans. Comput. Logic 7(4), 613–657 (2006). http://doi.acm.org/10.1145/1183278.1183279
Son, T.C., Pontelli, E., Sakama, C.: Logic programming for multiagent planning with negotiation. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 99–114. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-02846-5_13
Srivastava, S., Immerman, N., Zilberstein, S., Zhang, T.: Directed search for generalized plans using classical planners. In: Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS-2011). AAAI, June 2011
Stefik, M.J.: Planning with Constraints. Ph.D. thesis, Stanford, CA, USA (1980). aAI8016868
Zhou, N., Dovier, A.: A tabled prolog program for solving sokoban. In: IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, November 7–9, 2011, pp. 896–897. IEEE Computer Society (2011). http://dx.doi.org/10.1109/ICTAI.2011.145
Zhou, N., Dovier, A.: A tabled prolog program for solving sokoban. Fundam. Inform. 124(4), 561–575 (2013). http://dx.doi.org/10.3233/FI-2013-849
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Basseda, R., Kifer, M. (2015). State Space Planning Using Transaction Logic. In: Pontelli, E., Son, T. (eds) Practical Aspects of Declarative Languages. PADL 2015. Lecture Notes in Computer Science(), vol 9131. Springer, Cham. https://doi.org/10.1007/978-3-319-19686-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-19686-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19685-5
Online ISBN: 978-3-319-19686-2
eBook Packages: Computer ScienceComputer Science (R0)