On Solving Systems of Diagonal Polynomial Equations Over Finite Fields | SpringerLink
Skip to main content

On Solving Systems of Diagonal Polynomial Equations Over Finite Fields

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9130))

Included in the following conference series:

  • 786 Accesses

Abstract

We present a randomized algorithm to solve a system of diagonal polynomial equations over finite fields when the number of variables is greater than some fixed polynomial of the number of equations whose degree depends only on the degree of the polynomial equations. Our algorithm works in time polynomial in the number of equations and the logarithm of the size of the field, whenever the degree of the polynomial equations is constant. As a consequence we design polynomial time quantum algorithms for two algebraic hidden structure problems: for the hidden subgroup problem in certain semidirect product \(p\)-groups of constant nilpotency class, and for the multi-dimensional univariate hidden polynomial graph problem when the degree of the polynomials is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajtai, M.: Generating hard instances of lattice problems. In: 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 99–108 (1996)

    Google Scholar 

  2. Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: 46th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 469–478 (2005)

    Google Scholar 

  3. Chevalley, C.: Démonstration d’une hypothèse de M. Artin. Abh. Math. Sem. Hamburg 11, 73–75 (1936)

    Article  MathSciNet  Google Scholar 

  4. Childs, A.M., Schulman, L., Vazirani, U.: Quantum algorithms for hidden nonlinear structures. In: 48th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 395–404 (2007)

    Google Scholar 

  5. Decker, T., Draisma, J., Wocjan, P.: Quantum algorithm for identifying hidden polynomial function graphs. Quantum Inf. Comput. 9, 0215–0230 (2009)

    MathSciNet  Google Scholar 

  6. Decker, T., Høyer, P., Ivanyos, G., Santha, M.: Polynomial time quantum algorithms for certain bivariate hidden polynomial problems. Quantum Inf. Comput. 14, 790–806 (2014)

    MathSciNet  Google Scholar 

  7. Decker, T., Ivanyos, G., Santha, M., Wocjan, P.: Hidden symmetry subgroup problems. SIAM J. Comput. 42, 1987–2007 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Denney, A., Moore, C., Russell, A.: Finding conjugate stabilizer subgroups in \(PSL(2; q)\) and related groups. Quantum Inf. Comput. 10, 282–291 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and translating coset in quantum computing. SIAM J. Comput. 43, 1–24 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grigni, M., Schulman, L., Vazirani M., Vazirani, U.: Quantum mechanical algorithms for the nonabelian hidden subgroup problem. In: 33rd ACM Symposium on Theory of Computing (STOC), pp. 68–74 (2001)

    Google Scholar 

  11. Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quantum computation using group representations. SIAM J. Comput. 32, 916–934 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huang, M-D.A: Riemann hypothesis and finding roots over finite fields. In: 17th Annual ACM Symposium on Theory of Computing (STOC), pp. 121–130 (1985)

    Google Scholar 

  13. Ivanyos, G., Santha, M.: On solving systems of diagonal polynomial equations over finite fields. arXiv:1503.09016 [cs.CC]

  14. Ivanyos, G., Sanselme, L., Santha, M.: An efficient quantum algorithm for the hidden subgroup problem in nil-2 groups. Algoritmica 62, 480–498 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Comput. Sci. Engin. 3, 34–43 (2001)

    Article  Google Scholar 

  16. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, New York (1972)

    Chapter  Google Scholar 

  17. Kitaev, A.Y.: Quantum measurements and the Abelian Stabilizer Problem (1995). arXiv:quant-ph/9511026v1

  18. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35, 170–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Moore, C., Rockmore, D., Russell, A., Schulman, L.: The power of basis selection in Fourier sampling: hidden subgroup problems in affine groups. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1113–1122 (2004)

    Google Scholar 

  20. Papadimitriou, C.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48, 498–532 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33, 738–760 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shanks., D.: Five number-theoretic algorithms. In: 2nd Manitoba Conference on Numerical Mathematics, pp. 51–70 (1972)

    Google Scholar 

  23. Shor, P.: Algorithms for quantum computation: discrete logarithm and factoring. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  25. van de Woestijne, C.E.: Deterministic equation solving over finite fields. Ph.D. thesis, Universiteit Leiden (2006)

    Google Scholar 

  26. Warning, E.: Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem. Hamburg 11, 76–83 (1936)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Research was supported in part by the Hungarian Scientific Research Fund (OTKA) Grant NK105645, the Singapore Ministry of Education and the National Research Foundation Tier 3 Grant MOE2012-T3-1-009, by the European Commission IST STREP project Quantum Algorithms (QALGO) 600700, and the French ANR Blanc Program Contract ANR-12-BS02-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklos Santha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ivanyos, G., Santha, M. (2015). On Solving Systems of Diagonal Polynomial Equations Over Finite Fields. In: Wang, J., Yap, C. (eds) Frontiers in Algorithmics. FAW 2015. Lecture Notes in Computer Science(), vol 9130. Springer, Cham. https://doi.org/10.1007/978-3-319-19647-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19647-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19646-6

  • Online ISBN: 978-3-319-19647-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics