Abstract
This last decade, the success of Graphics Processor Units (GPUs) has led researchers to launch a lot of works on solving large complex problems by using these cheap and powerful architecture. Association Rules Mining (ARM) is one of these hard problems requiring a lot of computational resources. Due to the exponential increase of data bases size, existing algorithms for ARM problem become more and more inefficient.Thus, research has been focusing on parallelizing these algorithms. Recently, GPUs are starting to be used to this task. However, their major drawback is the threads divergence problem. To deal with this issue, we propose in this paper an intelligent strategy called Transactions-based Reordering ”TR” allowing an efficient evaluation of association rules on GPU by minimizing threads divergence. This strategy is based on data base re-organization. To validate our proposition, theoretical and experimental studies have been carried out using well-known synthetic data sets. The results are very promising in terms of minimizing the number of threads divergence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fang, W., et al.: Frequent itemset mining on graphics processors. In: Proceedings of the Fifth International Workshop on Data Management on New Hardware. ACM (2009)
Zhou, J., Yu, K.-M., Wu, B.-C.: Parallel frequent patterns mining algorithm on GPU. In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC). IEEE (2010)
Adil, S.H., Qamar, S.: Implementation of association rule mining using CUDA. In: International Conference on Emerging Technologies, ICET 2009. IEEE (2009)
Silvestri, C., Orlando, S.: gpudci: Exploiting gpus in frequent itemset mining. In: 2012 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE (2012)
Orlando, S., et al.: Adaptive and resource-aware mining of frequent sets. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2003. IEEE (2002)
Cui, Q., Guo, X.: Research on Parallel Association Rules Mining on GPU. In: Yang, Y., Ma, M. (eds.) Proceedings of the 2nd International Conference on Green Communications and Networks 2012 (GCN 2012): Volume 2. LNEE, vol. 224, pp. 215–222. Springer, Heidelberg (2013)
Zhang, F., Zhang, Y., Bakos, J.: Gpapriori: Gpu-accelerated frequent itemset mining. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER). IEEE (2011)
Djenouri, Y., Bendjoudi, A., Mehdi, M., Nouali-Taboudjemat, N., Habbas, Z.: Parallel Association Rules Mining Using GPUs and Bees Behaviors. In: Proceeding of 6th International Conference on Pattern Recognition and Soft Computing, Tunis, Tunisia. IEEE (2014)
Djenouri, Y., Drias, H., Habbas, Z.: Bees swarm optimisation using multiple strategies for association rule mining. International Journal of Bio-Inspired Computation 6(4), 239–249 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Djenouri, Y., Bendjoudi, A., Mehdi, M., Habbas, Z., Nouali-Taboudjemat, N. (2015). Data Reordering for Minimizing Threads Divergence in GPU-Based Evaluating Association Rules. In: Omatu, S., et al. Distributed Computing and Artificial Intelligence, 12th International Conference. Advances in Intelligent Systems and Computing, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-319-19638-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-19638-1_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19637-4
Online ISBN: 978-3-319-19638-1
eBook Packages: EngineeringEngineering (R0)