Mining Hierarchical Pathology Data Using Inductive Logic Programming | SpringerLink
Skip to main content

Mining Hierarchical Pathology Data Using Inductive Logic Programming

  • Conference paper
Artificial Intelligence in Medicine (AIME 2015)

Abstract

Considerable amounts of data are continuously generated by pathologists in the form of pathology reports. To date, there has been relatively little work exploring how to apply machine learning and data mining techniques to these data in order to extract novel clinical relationships. From a learning perspective, these pathology data possess a number of challenging properties, in particular, the temporal and hierarchical structure that is present within the data. In this paper, we propose a methodology based on inductive logic programming to extract novel associations from pathology excerpts. We discuss the challenges posed by analyzing these data and discuss how we address them. As a case study, we apply our methodology to Dutch pathology data for discovering possible causes of two rare diseases: cholangitis and breast angiosarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and guidelines. International Journal of Medical Informatics 77(2), 81–97 (2008)

    Article  Google Scholar 

  2. Bennett, C., Doub, T.: Data mining and electronic health records: Selecting optimal clinical treatments in practice. In: Proc. of DMIN 2010, pp. 313–318 (2010)

    Google Scholar 

  3. Casparie, M., Tiebosch, A., Burger, G., Blauwgeers, H., Van de Pol, A., van Krieken, J., Meijer, G.: Pathology databanking and biobanking in the netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive. Analytical Cellular Pathology 29(1), 19–24 (2007)

    Google Scholar 

  4. Cios, K., Moore, W.: Uniqueness of medical data mining. Artificial Intelligence in Medicine 26(1), 1–24 (2002)

    Article  Google Scholar 

  5. Cote, R., Robboy, S.: Progress in medical information management: Systematized nomenclature of medicine (SNOMED). JAMA 243(8), 756–762 (1980)

    Article  Google Scholar 

  6. Fournier-Viger, P.: Spmf: A sequential pattern mining framework (2011), http://www.philippe-fournier-viger.com/spmf

  7. Jensen, P., Jensen, L., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics 13(6), 395–405 (2012)

    Article  Google Scholar 

  8. Lavrač, N., Dzeroski, S., Bratko, I.: Handling imperfect data in inductive logic programming. Advances in Inductive Logic Programming 32, 48–64 (1996)

    Google Scholar 

  9. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. The Journal of Logic Programming 19, 629–679 (1994)

    Article  Google Scholar 

  10. Ramakrishnan, N., Hanauer, D., Keller, B.: Mining electronic health records. Computer 43(10), 77–81 (2010)

    Article  Google Scholar 

  11. Singh, A., Nadkarni, G., Guttag, J., Bottinger, E.: Leveraging hierarchy in medical codes for predictive modeling. In: Proc. of ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 96–103. ACM (2014)

    Google Scholar 

  12. Srinivasan, A.: The Aleph manual. Machine Learning at the Computing Laboratory. Oxford University (2001)

    Google Scholar 

  13. Sun, J., Hu, J., Luo, D., Markatou, M., Wang, F., Edabollahi, S., Steinhubl, S., Daar, Z., Stewart, W.: Combining knowledge and data driven insights for identifying risk factors using electronic health records. In: Proc. of AMIA Annual Symposium., vol. 2012, p. 901. American Medical Informatics Association (2012)

    Google Scholar 

  14. Vavpetič, A., Lavrač, N.: Semantic subgroup discovery systems and workflows in the sdm-toolkit. The Computer Journal 56(3), 304–320 (2013)

    Article  Google Scholar 

  15. Wang, F., Lee, N., Hu, J., Sun, J., Ebadollahi, S.: Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach. In: Proc. of the 18th ACM SIGKDD, pp. 453–461. ACM (2012)

    Google Scholar 

  16. Žáková, M., Železný, F.: Exploiting term, predicate, and feature taxonomies in propositionalization and propositional rule learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 798–805. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Op De Beéck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Op De Beéck, T. et al. (2015). Mining Hierarchical Pathology Data Using Inductive Logic Programming. In: Holmes, J., Bellazzi, R., Sacchi, L., Peek, N. (eds) Artificial Intelligence in Medicine. AIME 2015. Lecture Notes in Computer Science(), vol 9105. Springer, Cham. https://doi.org/10.1007/978-3-319-19551-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19551-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19550-6

  • Online ISBN: 978-3-319-19551-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics