Community Based Information Dissemination | SpringerLink
Skip to main content

Community Based Information Dissemination

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9093))

Included in the following conference series:

  • 1530 Accesses

Abstract

Given a social network, we study the problem of finding \(k\) seeds that maximize the dissemination of information. Based on the principle of homophily, communities play an important role since information can be disseminated to communities via the seeds. We introduce a new mechanism for detecting communities satisfying the pertinent criteria for communities and information dissemination. We demonstrate the effectiveness of our approach by an application of the results for influence maximization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://knoect.uni-koblenz.de/networks

  2. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Bomze, I., Budinich, M., Pardalos, P., Pelilo, M.: The maximum clique problem. Handbook of Combinatorial Optimization A, pp. 1–74 (1999)

    Google Scholar 

  4. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: 16th SIGKDD, pp. 1029–1038 (2010)

    Google Scholar 

  5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: 15th SIGKDD, pp. 199–208. ACM (2009)

    Google Scholar 

  6. Coscia, M., Giannoti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Journal of Statistical Analysis and Data Mining 47(11), 41–45 (1997)

    Google Scholar 

  7. Domingos, P., Richardson, M.: Mining the network value of customers. In: 7th SIGKDD (2001)

    Google Scholar 

  8. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM (1999)

    Google Scholar 

  9. Fortunato, S.: Community detection in graphs. Physical Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  10. Goyal, A., f. Bonchi, Lakshmanan, L.: A data-based approach to social influence maximization. In: VLDB (2011)

    Google Scholar 

  11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Ninth SIGKDD, pp. 137–146. ACM (2003)

    Google Scholar 

  12. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Transactions on the Web 1(1), 1–39 (2007)

    Article  Google Scholar 

  13. Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: 17th SIGKDD, pp. 529–537. ACM (2011)

    Google Scholar 

  14. Michael, J.: Labor dispute reconciliation in a forest products manufacturing facility. Forest Products Journal 47(11), 41–45 (1997)

    Google Scholar 

  15. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming 14, 265–294 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek. Cambridge University Press, Cambridge, UK (2005)

    Book  Google Scholar 

  17. Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On the maximum quasi-clique problem. Discrete Applied Mathematics 161(1), 244–257 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pullan, W., Franco, M., Mauro, B.: Cooperating local search for the maximum clique problem. J. Heuristics 17, 181–199 (2011)

    Article  Google Scholar 

  19. Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research 25, 159–185 (2006)

    MATH  Google Scholar 

  20. Raghavan, U., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Physical Review E 76 (2007)

    Google Scholar 

  21. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD (2002)

    Google Scholar 

  22. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: 16th SIGKDD, pp. 939–948. ACM (2010)

    Google Scholar 

  23. Yang, Z., Fu, A., Xu, Y., Huang, S., Leung, H.: Community based information dissemination. Technical Report, CSE, CUHK (2015). http://www.cse.cuhk.edu.hk/~adafu/paper/cbid.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Wai-Chee Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, Z., Fu, A.WC., Xu, Y., Huang, S., Leung, H.F. (2015). Community Based Information Dissemination. In: Sharaf, M., Cheema, M., Qi, J. (eds) Databases Theory and Applications. ADC 2015. Lecture Notes in Computer Science(), vol 9093. Springer, Cham. https://doi.org/10.1007/978-3-319-19548-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19548-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19547-6

  • Online ISBN: 978-3-319-19548-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics