Abstract
The firing rule for Petri nets assumes instantaneous and simultaneous consumption and creation of tokens. In the context of ordinary Petri nets, this poses no particular problem because of the system’s asynchronicity, even if token creation occurs later than token consumption in the firing. With read arcs, the situation changes, and several different choices of semantics are possible. The step semantics introduced by Janicki and Koutny can be seen as imposing a two-phase firing scheme: first, the presence of the required tokens is checked, then consumption and production of tokens happens. Pursuing this approach further, we develop a more general framework based on explicitly splitting the phases of firing, allowing to synthesize coherent steps. This turns out to define a more general non-atomic semantics, which has important potential for safety as it allows to detect errors that were missed by the previous semantics. Then we study the characterization of partial-order processes feasible under one or the other semantics.
This work is partially supported by the UK EPSRC project UNCOVER.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012)
Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures, and processes. Information and Computation 171(1), 1–49 (2001)
Busi, N., Pinna, G.M.: Non sequential semantics for contextual P/T nets. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 113–132. Springer, Heidelberg (1996)
Christensen, S., Hansen, N.D.: Coloured Petri nets extended with place capacities, test arcs and inhibitor arcs. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 186–205. Springer, Heidelberg (1993)
Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591 (1991)
Fernandes, J., Koutny, M., Pietkiewicz-Koutny, M., Sokolov, D., Yakovlev, A.: Step persistence in the design of GALS systems. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 190–209. Springer, Heidelberg (2013)
Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation of functions. In: Proceedings, Symposium on Logic in Computer Science, pp. 72–85. IEEE Computer Society (1987)
Janicki, R.: Relational structures model of concurrency. Acta Inf. 45(4), 279–320 (2008)
Janicki, R., Koutny, M.: Invariants and paradigms of concurrency theory. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp. 59–74. Springer, Heidelberg (1991)
Janicki, R., Koutny, M.: Structure of concurrency. Theoretical Computer Science 112(1), 5–52 (1993)
Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)
Janicki, R., Koutny, M.: Fundamentals of modelling concurrency using discrete relational structures. Acta Inf. 34, 367–388 (1997)
Juhás, G., Lorenz, R., Mauser, S.: Synchronous + concurrent + sequential = earlier than + not later than. In: Sixth International Conference on Application of Concurrency to System Design (ACSD 2006), pp. 261–272. IEEE Computer Society (2006)
Juhás, G., Lorenz, R., Mauser, S.: Causal semantics of algebraic Petri nets distinguishing concurrency and synchronicity. Fundam. Inform. 86(3), 255–298 (2008)
Kleijn, H.C.M., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput. 190(1), 18–69 (2004)
Kleijn, J., Koutny, M.: Causality in extensions of Petri nets. T. Petri Nets and Other Models of Concurrency 7, 225–254 (2013)
Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of boolean nets. Acta Informatica 50(1), 15–39 (2013)
Lamport, L.: The mutual exclusion problem: part I - a theory of interprocess communication. J. ACM 33(2), 313–326 (1986)
Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition Petri nets. Mathematical Structures in Computer Science 7(4), 359–397 (1997)
Monica, D.D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of the interval logics of allen’s relations on the class of all linear orders: complete classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI/AAAI 2011, pp. 845–850 (2011)
Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)
Nebel, B., Bürckert, H.: Reasoning about temporal relations: A maximal tractable subclass of allen’s interval algebra. J. ACM 42(1), 43–66 (1995)
Rodríguez, C.: Verification Based on Unfoldings of Petri Nets with Read Arcs. PhD thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, December 2013
Rodríguez, C., Schwoon, S.: Verification of Petri nets with read arcs. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 471–485. Springer, Heidelberg (2012)
Vogler, W.: A generalization of trace theory. RAIRO Infornatique théorique et Applications 25(2), 147–156 (1991)
Vogler, W.: Fairness and partial order semantics. Inf. Process. Lett. 55(1), 33–39 (1995)
Vogler, W.: Partial order semantics and read arcs. Theoretical Computer Science 286(1), 33–63 (2002)
Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 501–516. Springer, Heidelberg (1998)
Wiener, N.: A contribution to the theory of relative position. Proc. of the Cambridge Philosophical Society 33(2), 313–326 (1914)
Winkowski, J.: Processes of contextual nets and their characteristics. Fundamenta Informaticae 36(1) (1998)
Winkowski, J.: Reachability in contextual nets. Fundamenta Informaticae 51(1–2), 235–250 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chatain, T., Haar, S., Koutny, M., Schwoon, S. (2015). Non-atomic Transition Firing in Contextual Nets. In: Devillers, R., Valmari, A. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2015. Lecture Notes in Computer Science(), vol 9115. Springer, Cham. https://doi.org/10.1007/978-3-319-19488-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-19488-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19487-5
Online ISBN: 978-3-319-19488-2
eBook Packages: Computer ScienceComputer Science (R0)