Balanced Support Vector Regression | SpringerLink
Skip to main content

Balanced Support Vector Regression

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9120))

Included in the following conference series:

Abstract

We propose a novel idea of regression - balancing the distances from a regression function to all examples. We created a method, called balanced support vector regression (balanced SVR) in which we incorporated this idea to support vector regression (SVR) by adding an equality constraint to the SVR optimization problem. We implemented our method for two versions of SVR: ε-insensitive support vector regression (ε-SVR) and δ support vector regression (δ-SVR). We performed preliminary tests comparing the proposed method with SVR on real world data sets and achieved the improved generalization performance for suboptimal values of ε and δ with the similar overall generalization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    Google Scholar 

  2. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  3. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Neural Information Processing Systems, pp. 155–161 (1996)

    Google Scholar 

  4. Garcia, S., Herrera, F.: An extension on ”statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    Google Scholar 

  5. Wei Hsu, C., Chung Chang, C., Jen Lin, C.: A practical guide to support vector classification (2010)

    Google Scholar 

  6. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, New York (2011)

    Google Scholar 

  7. Libsvm data sets (June 2011)

    Google Scholar 

  8. Orchel, M.: Incorporating detractors into svm classification. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 361–369. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Orchel, M.: Incorporating a priori knowledge from detractor points into support vector classification. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 332–341. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Orchel, M.: Regression based on support vector classification. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 353–362. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Orchel, M.: Support vector regression as a classification problem with a priori knowledge in the form of detractors. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 351–358. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Orchel, M.: Support vector regression based on data shifting. Neurocomputing 96, 2–11 (2012)

    Article  Google Scholar 

  13. Orchel, M.: Incorporating Prior Knowledge into SVM Algorithms in Analysis of Multidimensional Data. Ph.D. thesis, AGH University of Science and Technology (2013)

    Google Scholar 

  14. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Steinwart, I., Christmann, A.: Support Vector Machines. Information Science and Statistics. Springer (2008)

    Google Scholar 

  16. Steinwart, I., Hush, D.R., Scovel, C.: Training svms without offset. J. Mach. Learn. Res. 12, 141–202 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Orchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Orchel, M. (2015). Balanced Support Vector Regression. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19369-4_64

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19368-7

  • Online ISBN: 978-3-319-19369-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics