Supervised Transform Learning for Face Recognition | SpringerLink
Skip to main content

Supervised Transform Learning for Face Recognition

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9119))

Included in the following conference series:

  • 2056 Accesses

Abstract

In this paper we investigate transform learning and apply it to face recognition problem. The focus is to find a transformation matrix that transforms the signal into a robust to noise, discriminative and compact representation. We propose a method that finds an optimal transform under the above constrains. The non-sparse variant of the presented method has a closed form solution whereas the sparse one may be formulated as a solution to a sparsity regularized problem. In addition we give a generalized version of the proposed problem and we propose a prior on the data distribution across the dimensions in the transform domain.

Supervised transform learning is applied to the MVQ [10] method and is tested on a face recognition application using the YALE B database. The recognition rate and the robustness to noise is superior compared to the original MVQ based on k-means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transfom. IEEE Trans. Comput. 23(1), 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  2. Beaton, A.E., Tukey, J.W.: The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data. Technometrics 16(2), 147–185 (1974)

    Article  Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: The “independent components” of natural scenes are edge filters. Vision Research 37, 3327–3338 (1997)

    Article  MATH  Google Scholar 

  4. Child, D.: The Essentials of Factor Analysis. Bloomsbury Academic (2006)

    Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience (2006)

    Google Scholar 

  6. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  7. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 643–660 (2001)

    Article  Google Scholar 

  8. Huber, P.J.: Robust estimation of a location parameter. Annals of Mathematical Statistics 35(1), 73–101 (1964)

    Article  MathSciNet  Google Scholar 

  9. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer (2002)

    Google Scholar 

  10. Kostadinov, D., Voloshynovskiy, S., Diephuis, M.: Visual information encoding for face recognition: sparse coding vs vector quantization. In: 4th Joint WIC IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, Netherlands, vol. 35 (May 2014)

    Google Scholar 

  11. Lay, D.C.: Linear Algebra and Its Applications, 4th edn. Addison-Wesley (2006)

    Google Scholar 

  12. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Problems 23(3), 947–968 (2007)

    Article  MathSciNet  Google Scholar 

  13. Martinez, A.M., Kak, A.C.: Pca versus lda. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 228–233 (2001)

    Article  Google Scholar 

  14. Rubinstein, R., Peleg, T., Elad, M.: Analysis k-svd: A dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Processing 61(3), 661–677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ravishankar, S., Bresler, Y.: ℓ0 sparsifying transform learning with efficient optimal updates and convergence guarantees. CoRR abs/1501.02859 (2015)

    Google Scholar 

  16. Bracewell, R.N.: The Fourier Transform and Its Applications. Electrical engineering series. McGraw Hill (2000)

    Google Scholar 

  17. Stphane, M.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press (2008)

    Google Scholar 

  18. Zdunek, R., Cichocki, A.: Non-negative matrix factorization with quasi-newton optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 870–879. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimche Kostadinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kostadinov, D., Voloshynovskiy, S., Ferdowsi, S., Diephuis, M., Scherer, R. (2015). Supervised Transform Learning for Face Recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_66

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics