Cross-Entropy Clustering Approach to One-Class Classification | SpringerLink
Skip to main content

Cross-Entropy Clustering Approach to One-Class Classification

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9119))

Included in the following conference series:

Abstract

Cross-entropy clustering (CEC) is a density model based clustering algorithm. In this paper we apply CEC to the one-class classification, which has several advantages over classical approaches based on Expectation Maximization (EM) and Support Vector Machines (SVM). More precisely, our model allows the use of various types of gaussian models with low computational complexity. We test the designed method on real data coming from the monitoring systems of wind turbines.

The paper was supported by the National Centre for Research and Development under Grant no. WND-DEM-1-153/01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azzalini, A., Bowman, A.: A look at some data on the old faithful geyser. Applied Statistics, 357–365 (1990)

    Google Scholar 

  2. Banfield, J.D., Raftery, A.E.: Model-based gaussian and non-gaussian clustering. Biometrics, 803–821 (1993)

    Google Scholar 

  3. Barnett, V., Lewis, T.: Outliers in statistical data, vol. 3. Wiley, New York (1994)

    Google Scholar 

  4. Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M.: Wind turbines states classification by a fuzzy-ART neural network with a stereographic projection as a signal normalization. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 225–234. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M.: Wind speed modelling using weierstrass function fitted by a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics 109, 68–78 (2012)

    Article  Google Scholar 

  6. Barszcz, T., Bielecki, A., Wójcik, M.: ART-type artificial neural networks applications for classification of operational states in wind turbines. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 11–18. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Bielecki, A., Barszcz, T., Wójcik, M.: Modelling of a chaotic load of wind turbines drivetrain. Mechanical Systems and Signal Processing 54-55, 491–505 (2015)

    Google Scholar 

  8. Bielecki, A., Barszcz, T., Wójcik, M., Bielecka, M.: Art-2 artificial neural networks applications for classification of vibration signals and operational states of wind turbines for intelligent monitoring. Diagnostyka 14(4), 21–26 (2013)

    Google Scholar 

  9. Bielecki, A., Barszcz, T., Wójcik, M., Bielecka, M.: Hybrid system of ART and RBF neural networks for classification of vibration signals and operational states of wind turbines. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 3–11. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Bishop, C.M.: Novelty detection and neural network validation. In: IEE Proceedings - Vision, Image and Signal Processing, vol. 141, pp. 217–222. IET (1994)

    Google Scholar 

  11. Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognition 28(5), 781–793 (1995)

    Article  Google Scholar 

  12. Davis-Stober, C., Broomell, S., Lorenz, F.: Exploratory data analysis with MATLAB. Psychometrika 72(1), 107–108 (2007)

    Article  Google Scholar 

  13. Guner, O.: History and evolution of the pharmacophore concept in computer-aided drug design. Current Topics in Medicinal Chemistry 2(12), 1321–1332 (2002)

    Article  Google Scholar 

  14. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)

    Article  Google Scholar 

  15. Lukashevich, H., Nowak, S., Dunker, P.: Using one-class svm outliers detection for verification of collaboratively tagged image training sets. In: IEEE International Conference on Multimedia and Expo, ICME 2009, pp. 682–685. IEEE (2009)

    Google Scholar 

  16. Markou, M., Singh, S.: Novelty detection: a review–part 1: statistical approaches. Signal Processing 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  17. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  18. Silverman, B.W.: Density estimation for statistics and data analysis, vol. 26. CRC Press (1986)

    Google Scholar 

  19. Śmieja, M., Warszycki, D., Tabor, J., Bojarski, A.J.: Asymmetric clustering index in a case study of 5-ht1a receptor ligands. PloS One 9(7), e102069 (2014)

    Google Scholar 

  20. Spurek, P., Tabor, J., Zając, E.: Detection of disk-like particles in electron microscopy images. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 411–417. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Stahura, F.L., Bajorath, J.: Virtual screening methods that complement hts. Combinatorial Chemistry & High Throughput Screening 7(4), 259–269 (2004)

    Article  Google Scholar 

  22. Tabor, J., Misztal, K.: Detection of elliptical shapes via cross-entropy clustering. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 656–663. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Tabor, J., Spurek, P.: Cross-entropy clustering. Pattern Recognition 47(9), 3046–3059 (2014)

    Article  Google Scholar 

  24. Tarassenko, L., Nairac, A., Townsend, N., Buxton, I., Cowley, P.: Novelty detection for the identification of abnormalities. International Journal of Systems Science 31(11), 1427–1439 (2000)

    Article  Google Scholar 

  25. Tax, D.M.J., Duin, R.P.W.: Outlier detection using classifier instability. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 593–601. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  26. Tax, D.M., Duin, R.P.: Support vector data description. Machine Learning 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  27. Waugh, S.: Extending and benchmarking cascade-correlation. Dept of Computer Science, University of Tasmania, Ph. D. Dissertation (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysaw Spurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Spurek, P., Wójcik, M., Tabor, J. (2015). Cross-Entropy Clustering Approach to One-Class Classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics