Abstract
Cross-entropy clustering (CEC) is a density model based clustering algorithm. In this paper we apply CEC to the one-class classification, which has several advantages over classical approaches based on Expectation Maximization (EM) and Support Vector Machines (SVM). More precisely, our model allows the use of various types of gaussian models with low computational complexity. We test the designed method on real data coming from the monitoring systems of wind turbines.
The paper was supported by the National Centre for Research and Development under Grant no. WND-DEM-1-153/01.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azzalini, A., Bowman, A.: A look at some data on the old faithful geyser. Applied Statistics, 357–365 (1990)
Banfield, J.D., Raftery, A.E.: Model-based gaussian and non-gaussian clustering. Biometrics, 803–821 (1993)
Barnett, V., Lewis, T.: Outliers in statistical data, vol. 3. Wiley, New York (1994)
Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M.: Wind turbines states classification by a fuzzy-ART neural network with a stereographic projection as a signal normalization. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 225–234. Springer, Heidelberg (2011)
Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M.: Wind speed modelling using weierstrass function fitted by a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics 109, 68–78 (2012)
Barszcz, T., Bielecki, A., Wójcik, M.: ART-type artificial neural networks applications for classification of operational states in wind turbines. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 11–18. Springer, Heidelberg (2010)
Bielecki, A., Barszcz, T., Wójcik, M.: Modelling of a chaotic load of wind turbines drivetrain. Mechanical Systems and Signal Processing 54-55, 491–505 (2015)
Bielecki, A., Barszcz, T., Wójcik, M., Bielecka, M.: Art-2 artificial neural networks applications for classification of vibration signals and operational states of wind turbines for intelligent monitoring. Diagnostyka 14(4), 21–26 (2013)
Bielecki, A., Barszcz, T., Wójcik, M., Bielecka, M.: Hybrid system of ART and RBF neural networks for classification of vibration signals and operational states of wind turbines. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 3–11. Springer, Heidelberg (2014)
Bishop, C.M.: Novelty detection and neural network validation. In: IEE Proceedings - Vision, Image and Signal Processing, vol. 141, pp. 217–222. IET (1994)
Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognition 28(5), 781–793 (1995)
Davis-Stober, C., Broomell, S., Lorenz, F.: Exploratory data analysis with MATLAB. Psychometrika 72(1), 107–108 (2007)
Guner, O.: History and evolution of the pharmacophore concept in computer-aided drug design. Current Topics in Medicinal Chemistry 2(12), 1321–1332 (2002)
Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review 22(2), 85–126 (2004)
Lukashevich, H., Nowak, S., Dunker, P.: Using one-class svm outliers detection for verification of collaboratively tagged image training sets. In: IEEE International Conference on Multimedia and Expo, ICME 2009, pp. 682–685. IEEE (2009)
Markou, M., Singh, S.: Novelty detection: a review–part 1: statistical approaches. Signal Processing 83(12), 2481–2497 (2003)
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)
Silverman, B.W.: Density estimation for statistics and data analysis, vol. 26. CRC Press (1986)
Śmieja, M., Warszycki, D., Tabor, J., Bojarski, A.J.: Asymmetric clustering index in a case study of 5-ht1a receptor ligands. PloS One 9(7), e102069 (2014)
Spurek, P., Tabor, J., Zając, E.: Detection of disk-like particles in electron microscopy images. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 411–417. Springer, Heidelberg (2013)
Stahura, F.L., Bajorath, J.: Virtual screening methods that complement hts. Combinatorial Chemistry & High Throughput Screening 7(4), 259–269 (2004)
Tabor, J., Misztal, K.: Detection of elliptical shapes via cross-entropy clustering. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 656–663. Springer, Heidelberg (2013)
Tabor, J., Spurek, P.: Cross-entropy clustering. Pattern Recognition 47(9), 3046–3059 (2014)
Tarassenko, L., Nairac, A., Townsend, N., Buxton, I., Cowley, P.: Novelty detection for the identification of abnormalities. International Journal of Systems Science 31(11), 1427–1439 (2000)
Tax, D.M.J., Duin, R.P.W.: Outlier detection using classifier instability. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 593–601. Springer, Heidelberg (1998)
Tax, D.M., Duin, R.P.: Support vector data description. Machine Learning 54(1), 45–66 (2004)
Waugh, S.: Extending and benchmarking cascade-correlation. Dept of Computer Science, University of Tasmania, Ph. D. Dissertation (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Spurek, P., Wójcik, M., Tabor, J. (2015). Cross-Entropy Clustering Approach to One-Class Classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-19324-3_43
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19323-6
Online ISBN: 978-3-319-19324-3
eBook Packages: Computer ScienceComputer Science (R0)