On the Galois Lattice of Bipartite Distance Hereditary Graphs | SpringerLink
Skip to main content

On the Galois Lattice of Bipartite Distance Hereditary Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8986))

Included in the following conference series:

  • International Workshop on Combinatorial Algorithms
  • 677 Accesses

Abstract

We give a complete characterization of bipartite graphs having tree-like Galois lattices. We prove that the poset obtained by deleting bottom and top elements from the Galois lattice of a bipartite graph is tree-like if and only if the graph is a Bipartite Distance Hereditary graph. We show that the lattice can be realized as the containment relation among directed paths in an arborescence. Moreover, a compact encoding of Bipartite Distance Hereditary graphs is proposed, that allows optimal time computation of neighborhood intersections and maximal bicliques.

The first author was partially supported by Italian MIUR project “La Matematica per la società e l’innovazione tecnologica–MATHTECH”. The second author was partially supported by Italian MIUR projects PRIN 2012C4E3KT “AMANDA – Algorithmics for MAssive and Networked DAta” and “Sottografi fault resilient e algoritmi per modelli di calcolo con memory faults”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs. Discrete Appl. Math. 86, 125–144 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atkinson, M.D.: On computing the number of linear extensions of a tree. Order 7, 23–25 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory Ser. B 41, 182–208 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Trees in concept lattices. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 174–184. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Berry, A., Sigayret, A.: Dismantlable lattices in the mirror. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 44–59. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Brucker, F., Gély, A.: Crown-free lattices and their related graphs. Order 28(3), 443–454 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cornelsen, S., Di Stefano, G.: Treelike comparability graphs. Discrete Appl. Math. 157, 1711–1722 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM 30(3), 514–550 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  10. Howorka, E.: A characterization of distance-hereditary graphs. Q. J. Math. 2(26), 417–420 (1977)

    Article  MathSciNet  Google Scholar 

  11. Howorka, E.: A characterization of Ptolemaic graphs, survey of results. In: Proceedings of the 8th SE Conference Combinatorics, Graph Theory and Computing, pp. 355–361 (1977)

    Google Scholar 

  12. Peled, U.N., Wu, J.: Restricted unimodular chordal graphs. J. Graph Theory 30(2), 121–136 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rival, I.: Lattices with doubly irreducible elements. Can. Math. Bull. 17(1), 91–95 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schieber, G., Vishkin, U.: On finding lowest common ancestors: simplification and parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Swaminathan, R.P., Wagner, D.B.: The arborescence-realization problem. Discrete Appl. Math. 59, 267–283 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Syslo, M.M.: Series-parallel graphs and depth-first search trees. IEEE Trans. Circuits Syst. 31(12), 1029–1033 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns Hopkins University Press, Baltimore, Maryland (1992)

    MATH  Google Scholar 

  18. Whitney, H.: 2-isomorphic graphs. Am. Math. J. 55, 245–254 (1933)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Giulio Franciosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Apollonio, N., Caramia, M., Franciosa, P.G. (2015). On the Galois Lattice of Bipartite Distance Hereditary Graphs. In: Jan, K., Miller, M., Froncek, D. (eds) Combinatorial Algorithms. IWOCA 2014. Lecture Notes in Computer Science(), vol 8986. Springer, Cham. https://doi.org/10.1007/978-3-319-19315-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19315-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19314-4

  • Online ISBN: 978-3-319-19315-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics