The State Complexity of Permutations on Finite Languages over Binary Alphabets | SpringerLink
Skip to main content

The State Complexity of Permutations on Finite Languages over Binary Alphabets

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9118))

Included in the following conference series:

Abstract

We investigate the state complexity of the permutation operation over finite binary languages. We first give an upper bound of the state complexity of the permutation operation for a restricted case of these languages. We later present a general upper bound of the state complexity of permutation over finite binary languages, which is asymptotically the same as the previous case. Moreover, we show that there is a family of languages that the minimal DFA recognizing each of these languages needs at least as many states as the given upper bound for the restricted case. Furthermore, we investigate the state complexity of permutation by focusing on the structure of the minimal DFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Domaratzki, M.: State complexity of proportional removals. J. Autom. Lang. Comb. 7(4), 455–468 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review of state complexity of individual operations. Technical report, Universidade do Porto, Technical Report Series DCC-2011-08, Version 1.1, September (2012). www.dcc.fc.up.pt/Pubs (To appear in Computer Science Review, 2015)

  5. Goč, D., Palioudakis, A., Salomaa, K.: Nondeterministic state complexity of proportional removals. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 102–111. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite languages. Int. J. Found. Comput. Sci. 19(03), 581–595 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata – a survey. Inf. Comput. 209(3), 456–470 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kleene, S.C.: Representation of events in nerve nets and finite automata. Technical report, DTIC Document (1951)

    Google Scholar 

  11. Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under Parikh equivalence. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 294–305. Springer, Heidelberg (2014)

    Google Scholar 

  12. Lupanov, O.: A comparison of two types of finite sources. Problemy Kibernetiki 9, 328–335 (1963)

    Google Scholar 

  13. Maslov, A.: Estimates of the number of states of finite automata. In: Soviet Mathematics Doklady, Translation from Doklady Akademii Nauk SSSR 194, vol. 11, pp. 1266–1268, 1373–1375 (1970)

    Google Scholar 

  14. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  15. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

    Google Scholar 

  16. Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. C–20(10), 1211–1214 (1971)

    Article  Google Scholar 

  17. Parikh, R.J.: On context-free languages. J. ACM (JACM) 13(4), 570–581 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  19. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  20. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yu, S.: Handbook of Formal Languages, Volume 1, Chap. Regular Languages, pp. 41–110. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Acknowledgment

This research was supported by the Basic Science Research Program through NRF funded by MEST (2012R1A1A2044562), the International Cooperation Program managed by NRF of Korea (2014K2A1A2048512) and the Natural Sciences and Engineering Research Council of Canada Grant OGP0147224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Salomaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Palioudakis, A., Cho, DJ., Goč, D., Han, YS., Ko, SK., Salomaa, K. (2015). The State Complexity of Permutations on Finite Languages over Binary Alphabets. In: Shallit, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2015. Lecture Notes in Computer Science(), vol 9118. Springer, Cham. https://doi.org/10.1007/978-3-319-19225-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19225-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19224-6

  • Online ISBN: 978-3-319-19225-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics