Abstract
In this work, a novel continuous-time spiking neural network paradigm is presented. Indeed, because of a neuron can fire at any given time, this kind of approach is necessary. For the purpose of developing a simulation tool having such a property, an ad-hoc event-driven method is implemented. A simplified neuron model is introduced with characteristics similar to the classic Leaky Integrate-and-Fire model, but including the spike latency effect. The latency takes into account that the firing of a given neuron is not instantaneous, but occurs after a continuous-time delay. Both excitatory and inhibitory neurons are considered, and simple synaptic plasticity rules are modeled. Nevetheless the chance to customize the network topology, an example with Cellular Neural Network (CNN)-like connections is presented, and some interesting global effects emerging from the simulations are reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Maass, W.: Networks of spiking neurons: The third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)
Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application of spiking neural networks. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11(3), 239–248 (2006)
Ponulak, F., Kasiński, A.: Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol. Exp. 71(4), 409–433 (2011)
Brunel, N., van Rossum, M.C.W.: Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol. Cybern. 97(5-6), 337–339 (2007)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)
Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Trans. on Neural Networks 15(5), 1063–1070 (2004)
Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Comput. 18(2), 245–282 (2006)
Chrol-Cannon, J., Gruning, A., Yaochu, J.: The emergence of polychronous groups under varying input patterns, plasticity rules and network connectivities. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2012)
Edelman, G.M.: Neural Darwinism: The Theory of Neuronal Group Selection. Basic Book, Inc., New York (1987)
Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex 14(8), 933–944 (2004)
Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006)
Burkitt, A.N.: A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol. Cybern. 95(2), 97–112 (2006)
Brette, R., Rudolph, M., Carnevale, T., Hines, H., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)
Citri, A., Malenka, R.C.: Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2008)
FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)
Chua, L., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. on Circuits and Systems 35(10), 1257–1272 (1988)
Mattia, M., Del Giudice, P.: Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput. 12(10), 2305–2329 (2000)
NEURON simulator, http://www.neuron.yale.edu/neuron/
Wang, H., Chen, Y., Chen, Y.: First-spike latency in Hodgkin’s three classes of neurons. J. of Theoretical Biology 328, 19–25 (2013)
Okun, M., Lampl, I.: Balance of excitation and inhibition. Scholarpedia 4(8), 7467 (2009), http://www.scholarpedia.org/article/Balance_of_excitation_and_inhibition
Pernice, V., Staude, B., Cardanobile, S., Rotter, S.: Recurrent interactions in spiking networks with arbitrary topology. Physical Review E 85, 031916 (2012)
Buzsáki, G.: Rhythem of the brain. Oxford University Press, Inc. 198 Madison Avenue, New York (2006)
Parasuraman, K., Elshorbagy, A., Carey, S.: Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resources Research 42(5), 1–14 (2006)
Wu, Q.X., McGinnity, M., Maguire, L., Cai, R., Chen, M.: Simulation of Visual Attention Using Hierarchical Spiking Neural Networks. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840, pp. 26–31. Springer, Heidelberg (2012)
Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(1), 440–442 (1998)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)
Finkel, L.H., Edelman, G.M.: Interaction of synaptic modification rules within populations of neurons. Proc. Natl. Acad. Sci. USA, 1291–1295 (1985)
Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature 3(9), 919–926 (2000)
Sullivan, T.J., de Sa, V.R.: Homeostatic synaptic scaling in self-organizing maps. Neural Networks 19, 734–743 (2006)
Ros, E., Carrillo, R., Ortigosa, E.M., Barbour, B., Agís, R.: Event-Driven Simulation Scheme for Spiking Neural Networks Using Lookup tables to Characterize Neuronal Dynamics. Neural Comput 18(12), 2959–2993 (2006)
D’Haene, M., Schrauwen, B., Van Campenhout, J., Stroobandt, D.: Accelerating Event-Driven Simulation of Spiking Neurons with Multiple Synaptic Time Constants. Neural Comput. 21(4), 1068–1099 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Cristini, A., Salerno, M., Susi, G. (2015). A Continuous-Time Spiking Neural Network Paradigm. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-18164-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-18164-6_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18163-9
Online ISBN: 978-3-319-18164-6
eBook Packages: EngineeringEngineering (R0)