A Continuous-Time Spiking Neural Network Paradigm | SpringerLink
Skip to main content

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 37))

Abstract

In this work, a novel continuous-time spiking neural network paradigm is presented. Indeed, because of a neuron can fire at any given time, this kind of approach is necessary. For the purpose of developing a simulation tool having such a property, an ad-hoc event-driven method is implemented. A simplified neuron model is introduced with characteristics similar to the classic Leaky Integrate-and-Fire model, but including the spike latency effect. The latency takes into account that the firing of a given neuron is not instantaneous, but occurs after a continuous-time delay. Both excitatory and inhibitory neurons are considered, and simple synaptic plasticity rules are modeled. Nevetheless the chance to customize the network topology, an example with Cellular Neural Network (CNN)-like connections is presented, and some interesting global effects emerging from the simulations are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maass, W.: Networks of spiking neurons: The third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  2. Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application of spiking neural networks. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11(3), 239–248 (2006)

    MathSciNet  Google Scholar 

  3. Ponulak, F., Kasiński, A.: Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol. Exp. 71(4), 409–433 (2011)

    Google Scholar 

  4. Brunel, N., van Rossum, M.C.W.: Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol. Cybern. 97(5-6), 337–339 (2007)

    Article  MATH  Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  6. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Trans. on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  7. Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Comput. 18(2), 245–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chrol-Cannon, J., Gruning, A., Yaochu, J.: The emergence of polychronous groups under varying input patterns, plasticity rules and network connectivities. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2012)

    Google Scholar 

  9. Edelman, G.M.: Neural Darwinism: The Theory of Neuronal Group Selection. Basic Book, Inc., New York (1987)

    Google Scholar 

  10. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex 14(8), 933–944 (2004)

    Article  Google Scholar 

  11. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burkitt, A.N.: A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol. Cybern. 95(2), 97–112 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brette, R., Rudolph, M., Carnevale, T., Hines, H., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  14. Citri, A., Malenka, R.C.: Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2008)

    Article  Google Scholar 

  15. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)

    Article  Google Scholar 

  16. Chua, L., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. on Circuits and Systems 35(10), 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mattia, M., Del Giudice, P.: Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput. 12(10), 2305–2329 (2000)

    Article  Google Scholar 

  18. NEURON simulator, http://www.neuron.yale.edu/neuron/

  19. Wang, H., Chen, Y., Chen, Y.: First-spike latency in Hodgkin’s three classes of neurons. J. of Theoretical Biology 328, 19–25 (2013)

    Article  Google Scholar 

  20. Okun, M., Lampl, I.: Balance of excitation and inhibition. Scholarpedia 4(8), 7467 (2009), http://www.scholarpedia.org/article/Balance_of_excitation_and_inhibition

    Article  Google Scholar 

  21. Pernice, V., Staude, B., Cardanobile, S., Rotter, S.: Recurrent interactions in spiking networks with arbitrary topology. Physical Review E 85, 031916 (2012)

    Article  Google Scholar 

  22. Buzsáki, G.: Rhythem of the brain. Oxford University Press, Inc. 198 Madison Avenue, New York (2006)

    Book  Google Scholar 

  23. Parasuraman, K., Elshorbagy, A., Carey, S.: Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resources Research 42(5), 1–14 (2006)

    Article  Google Scholar 

  24. Wu, Q.X., McGinnity, M., Maguire, L., Cai, R., Chen, M.: Simulation of Visual Attention Using Hierarchical Spiking Neural Networks. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840, pp. 26–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(1), 440–442 (1998)

    Article  Google Scholar 

  26. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Finkel, L.H., Edelman, G.M.: Interaction of synaptic modification rules within populations of neurons. Proc. Natl. Acad. Sci. USA, 1291–1295 (1985)

    Google Scholar 

  28. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature 3(9), 919–926 (2000)

    Google Scholar 

  29. Sullivan, T.J., de Sa, V.R.: Homeostatic synaptic scaling in self-organizing maps. Neural Networks 19, 734–743 (2006)

    Article  MATH  Google Scholar 

  30. Ros, E., Carrillo, R., Ortigosa, E.M., Barbour, B., Agís, R.: Event-Driven Simulation Scheme for Spiking Neural Networks Using Lookup tables to Characterize Neuronal Dynamics. Neural Comput 18(12), 2959–2993 (2006)

    Article  MATH  Google Scholar 

  31. D’Haene, M., Schrauwen, B., Van Campenhout, J., Stroobandt, D.: Accelerating Event-Driven Simulation of Spiking Neurons with Multiple Synaptic Time Constants. Neural Comput. 21(4), 1068–1099 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Cristini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cristini, A., Salerno, M., Susi, G. (2015). A Continuous-Time Spiking Neural Network Paradigm. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-18164-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18164-6_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18163-9

  • Online ISBN: 978-3-319-18164-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics