A Memristive System Based on an Electrostatic Loudspeaker | SpringerLink
Skip to main content

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 37))

  • 1951 Accesses

Abstract

The memristor (a memory–resistor) is a fundamental two-terminal circuit element with a nonlinear relationship between the integral of the voltage and the charge. In the literature, the research interest in the development of new memristive systems is growing, due to the potential applications as analog memories or as synapses in neuromorphic systems. In this paper, the possibility of using an electrostatic loudspeaker as a memristor-based system is explored. This kind of loudspeakers use a thin flat polarized diaphragm, usually consisting of a plastic sheet coated with a conductive material, between two electrically conductive plates, with a small air gap between them. When an electrostatic field is applied to the plates, a force is exerted on the charged diaphragm, and its resulting movement drives the air on either side of it. To get a memristor, the deformation of the diaphragm is here converted in a resistance value using a strain gauge attached over it. A mathematical model of the system is developed. Simulation results show that the device based on the combination of an electrostatic loudspeaker and a strain gauge has all the properties of the memristive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor: the missing circuit element. IEEE Transactions on Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 14, 80–83 (2008)

    Article  Google Scholar 

  4. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)

    Article  Google Scholar 

  5. Biolek, Z., Biolek, D., Biolková, B.: Spice model of memristor with nonlinear dopant drift. Radio Eng. 18(2), 210–214 (2009)

    Google Scholar 

  6. Abdalla, H., Pickett, M.D.: SPICE modeling of Memristors. In: IEEE International Symposium on Circuits and Systems, pp. 1832–1835 (2011)

    Google Scholar 

  7. Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM - ThrEshold Adaptive Memristor Model. IEEE Trans. Circuits Syst. I 60(1), 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  8. Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits and Systems Magazine 13(2), 89–105 (2013)

    Article  Google Scholar 

  9. Krieger, J.H., Spitzer, S.M.: Non-traditional, non-volatile memory based on switching and retention phenomena in polymeric thin films. In: Proceedings of the 2004 Non-Volatile Memory Technology Symposium, p. 121 (2004)

    Google Scholar 

  10. Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N.D., Bibes, M., Barthélémy, A., Grollier, J.: A ferroelectric memristor. Nature Materials 11(10), 860–864 (2012)

    Article  Google Scholar 

  11. Wang, X., Chen, Y., Xi, H., Dimitrov, D.: Spintronic Memristor through Spin Torque Induced Magnetization Motion. IEEE Electron Device Letters 30(3), 294–297 (2009)

    Article  Google Scholar 

  12. Huai, Y.: Spin-Transfer Torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bulletin 18(6) (2008)

    Google Scholar 

  13. Pershin, Y.V., Di Ventra, M.: Spin memristive systems: spin memory effects in semiconductor spintronics. Physical Review B 78(11) (2008)

    Google Scholar 

  14. Di Ventra, M., Peotta, S.: Superconducting Memristors. Bulletin of the American Physical Society 59(1) (2014)

    Google Scholar 

  15. Wang, X.L., Shao, Q., Leung, C.W., Ruotolo, A.: Non-volatile, reversible switching of the magnetic moment in Mn-doped ZnO films. Journal of Applied Physics 113 (2013)

    Google Scholar 

  16. Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electronics Letters 48(14), 824–825 (2012)

    Article  Google Scholar 

  17. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    Article  Google Scholar 

  18. Troiano, A., Corinto, F., Pasero, E.: A Memristor circuit using basic elements with memory capability. In: Bassis, S., Esposito, A., Morabito, F.C. (eds.) Recent Advances of Neural Networks Models and Applications. SIST, vol. 26, pp. 117–124. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Versace, M., Chandler, B.: MoNETA: A Mind Made from Memristors. IEEE Spectrum (2010)

    Google Scholar 

  20. Johnsen, G.K.: An introduction to the memristor: a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimp. 3, 20–28 (2012)

    Article  Google Scholar 

  21. Sanders, R.R.: The electrostatic loudspeaker design cookbook. Audio Amateur Press (1995)

    Google Scholar 

  22. Rangsten, P., Smith, L., Rosengren, L., Hök, B.: Electrostatically excited diaphragm driven as a loudspeaker. Sensors and Actuators A: Physical 52(1-3), 211–215 (1996)

    Article  Google Scholar 

  23. Danaila, I., Joly, P., Kaber, S., Postel, M.: Elasticity: elastic deformation of a thin plate. In: An Introduction to Scientific Computing, pp. 151–164. Springer (2007)

    Google Scholar 

  24. Ventsel, E., Krauthammer, T.: Thin plates and shells: theory: analysis, and applications. CRC Press (2001)

    Google Scholar 

  25. Walter, D.P.: Formulas for stress, strain, and structural matrices. John Wiley & Sons Inc. (2004)

    Google Scholar 

  26. Vashist, S.K.: A Review of Microcantilevers for Sensing Applications. AZoJono – Journal of Nantechnology Online (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Troiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Troiano, A., Balzanelli, E., Pasero, E., Mesin, L. (2015). A Memristive System Based on an Electrostatic Loudspeaker. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-18164-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18164-6_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18163-9

  • Online ISBN: 978-3-319-18164-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics