Detecting Hotspots from Trajectory Data in Indoor Spaces | SpringerLink
Skip to main content

Detecting Hotspots from Trajectory Data in Indoor Spaces

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9049))

Included in the following conference series:

  • 2101 Accesses

Abstract

The increasing deployment of indoor positioning technologies like RFID, Wi-fi, and Bluetooth offers the possibility to obtain users’ trajectories in indoor spaces. In this paper, based on indoor moving-object trajectories, we aim to detect hotspots from indoor trajectory data. Such information is helpful for users to understand the surrounding locations as well as to enable indoor trajectory mining and location recommendation. We first define a new kind of query called indoor hotspot query. Then, we introduce a pre-processing step to remove meaningless locations and obtain indoor stay trajectories. Further, we propose a new approach to answering indoor hotspot queries w.r.t. two factors: (1) users’ interests in indoor locations, and (2) the mutual reinforcement relationship between users and indoor locations. Particularly, we construct a user-location matrix and use an iteration-based technique to compute the hotness of indoor locations. We evaluate our proposal on 223,564 indoor tracking records simulating 100 users’ movements over a period of one month in a six-floor building. The results in terms of MAP, P@n, and nDCG show that our proposal outperforms baseline methods like rank-by-visit, rank-by-density, and rank-by-duration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jensen, C.S., Lu, H., Yang, B.: Indoor - A New Data Management Frontier. IEEE Data Engineering Bulletin 33(2), 12–17 (2010)

    Google Scholar 

  2. Li, Q., Jin, P., Zhao, L., Wan, S., Yue, L.: IndoorDB: extending oracle to support indoor moving objects management. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 476–480. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery of dense areas in spatio-temporal databases. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 306–324. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density queries on continuously moving objects. In: Proc. of ICDE, p. 71 (2006)

    Google Scholar 

  5. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proc. of KDD, pp. 330–339 (2007)

    Google Scholar 

  7. Alvares, L.O., Bogorny, V., Kuijpers, B., et al.: A model for enriching trajectories with semantic geographical information. In: Proc. of GIS, p. 22 (2007)

    Google Scholar 

  8. Ahmed, T., Pedersen, T.B., Lu, H.: Capturing hotspots for constrained indoor movement. In: Proc. of GIS, pp. 462–465 (2013)

    Google Scholar 

  9. Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proc. of SAC, pp. 863–868 (2008)

    Google Scholar 

  10. Uddin, M.R., Ravishankar, C.V., Tsotras, V.J.: Finding regions of interest from trajectory data. In: Proc. of MDM, pp. 39–48 (2011)

    Google Scholar 

  11. Dudas, P., Ghafourian, M., Karimi, H.: ONALIN: Ontology and algorithm for indoor routing. In: Proc. of MDM, pp. 720–725 (2009)

    Google Scholar 

  12. Kim, J., Kang, H., Lee, T., et al.: Topology of the prism model for 3D indoor spatial objects. In: Proc. of MDM, pp. 698–703 (2009)

    Google Scholar 

  13. Wang, N., Jin, P., Xiong, Y., Yue, L.: A multi-granularity grid-based graph model for indoor space. International Journal of Multimedia and Ubiquitous Engineering 9(4), 157–170 (2014)

    Article  Google Scholar 

  14. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. mobile data management. In: Proc. of MDM, pp. 17–24 (2008)

    Google Scholar 

  15. Jin, P., Zhang, L., Zhao, J., Zhao, L., Yue, L.: Semantics and modeling of indoor moving objects. International Journal of Multimedia and Ubiquitous Engineering 7(2), 153–158 (2012)

    Google Scholar 

  16. Huang, C., Jin, P., Wang, H., Wang, N., Wan, S., Yue, L.: IndoorSTG: a flexible tool to generate trajectory data for indoor moving objects. In: Proc. of MDM, pp. 341–343 (2013)

    Google Scholar 

  17. Manning, C.D., Raghavanm, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  18. Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proc. of WWW, pp. 791–800 (2009)

    Google Scholar 

  19. Cao, X., Cong, G., Jensen, C.S.: Mining significant semantic locations from GPS data. PVLDB 3(1), 1009–1020 (2010)

    Google Scholar 

  20. Ahmed, T., Pedersen, T.B., Lu, H.: Finding dense locations in indoor tracking data. In: Proc. of MDM, pp. 189–194 (2014)

    Google Scholar 

  21. Schafer, M., Knapp, C., Chakraborty, S.: Automatic generation of topological indoor maps for real-time map-based localization and tracking. In: Proc. of IPIN, pp. 1–8. IEEE CS (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiquan Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jin, P., Du, J., Huang, C., Wan, S., Yue, L. (2015). Detecting Hotspots from Trajectory Data in Indoor Spaces. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M. (eds) Database Systems for Advanced Applications. DASFAA 2015. Lecture Notes in Computer Science(), vol 9049. Springer, Cham. https://doi.org/10.1007/978-3-319-18120-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18120-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18119-6

  • Online ISBN: 978-3-319-18120-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics