Abstract
Hitherto, sentiment analysis has been mainly based on algorithms relying on the textual representation of online reviews and microblogging posts. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling, and counting their words. But when it comes to interpreting sentences and extracting opinionated information, their capabilities are known to be very limited. Current approaches to sentiment analysis are mainly based on supervised techniques relying on manually labeled samples, such as movie or product reviews, where the overall positive or negative attitude was explicitly indicated. However, opinions do not occur only at document-level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a review. In order to overcome this and many other issues related to sentiment analysis, we propose a novel framework, termed concept-level sentiment analysis (CLSA) model, which takes into account all the natural-language-processing tasks necessary for extracting opinionated information from text, namely: microtext analysis, semantic parsing, subjectivity detection, anaphora resolution, sarcasm detection, topic spotting, aspect extraction, and polarity detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agirre, E., Ansa, O., Hovy, E., Martínez, D.: Enriching very large ontologies using the www. arXiv preprint cs/0010026 (2000)
Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic modeling via dirichlet forest priors. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 25–32. ACM (2009)
Baldwin, B.: Cogniac: high precision coreference with limited knowledge and linguistic resources. In: Proceedings of a Workshop on Operational Factors in Practical, Robust Anaphora Resolution for Unrestricted Texts, pp. 38–45. Association for Computational Linguistics (1997)
Barbu, C., Mitkov, R.: Evaluation tool for rule-based anaphora resolution methods. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, pp. 34–41. Association for Computational Linguistics (2001)
Bell, D., Koulouri, T., Lauria, S., Macredie, R., Sutton, J.: Microblogging as a mechanism for human-robot interaction. Knowledge-Based Systems 69, 64–77 (2014)
Blair-Goldensohn, S., Hannan, K., McDonald, R., Neylon, T., Reis, G.A., Reynar, J.: Building a sentiment summarizer for local service reviews. In: Proceedings of WWW 2008 Workshop on NLP in the Information Explosion Era (2008)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)
Bloom, P.: Glue for the mental world. Nature 421, 212–213 (2003)
Bonzanini, M., Martinez-Alvarez, M., Roelleke, T.: Opinion summarisation through sentence extraction: An investigation with movie reviews. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR 2012, pp. 1121–1122 (2012)
Branavan, S.R.K., Chen, H., Eisenstein, J., Barzilay, R.: Learning document-level semantic properties from free-text annotations. Journal of Artificial Intelligence Research 34(2), 569 (2009)
Brennan, S.E., Friedman, M.W., Pollard, C.J.: A centering approach to pronouns. In: Proceedings of the 25th Annual Meeting on Association for Computational Linguistics, pp. 155–162. Association for Computational Linguistics (1987)
Cambria, E.: An introduction to concept-level sentiment analysis. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 478–483. Springer, Heidelberg (2013)
Cambria, E., Fu, J., Bisio, F., Poria, S.: AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis. In: AAAI, Austin, pp. 508–514 (2015)
Cambria, E., Gastaldo, P., Bisio, F., Zunino, R.: An ELM-based model for affective analogical reasoning. Neurocomputing 149, 443–455 (2015)
Cambria, E., Hussain, A.: Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Springer, Cham (2015)
Cambria, E., Hussain, A., Havasi, C., Eckl, C., Munro, J.: Towards crowd validation of theUK national health service. In: WebSci, Raleigh (2010)
Cambria, E., Schuller, B., Liu, B., Wang, H., Havasi, C.: Knowledge-based approaches to concept-level sentiment analysis. IEEE Intelligent Systems 28(2), 12–14 (2013)
Cambria, E., Song, Y., Wang, H., Howard, N.: Semantic multi-dimensional scaling for open-domain sentiment analysis. IEEE Intelligent Systems 29(2), 44–51 (2014)
Cao, C., Feng, Q., Gao, Y., Gu, F., Si, J., Sui, Y., Tian, W., Wang, H., Wang, L., Zeng, Q., et al.: Progress in the development of national knowledge infrastructure. Journal of Computer Science and Technology 17(5), 523–534 (2002)
Cardie, C., Wagstaff, K., et al.: Noun phrase coreference as clustering. In: Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 82–89 (1999)
Chen, M., Jin, X., Shen, D.: Short text classification improved by learning multi-granularity topics. In: IJCAI, pp. 1776–1781. Citeseer (2011)
Chen, W.L., Zhu, J.B., Yao, T.S., Zhang, Y.X.: Automatic learning field words by bootstrapping. In: Proc. of the JSCL, vol. 72, Tsinghua University Press, Beijing (2003)
Chen, Z., Liu, B.: Mining topics in documents: standing on the shoulders of big data. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1116–1125. ACM (2014)
Chikersal, P., Poria, S., Cambria, E.: SeNTU: Sentiment analysis of tweets by combining a rule-based classifier with supervised learning. In: Proceedings of the International Workshop on Semantic Evaluation (SemEval 2015) (2015)
Cohen, W.W., Hirsh, H.: Joins that generalize: Text classification using whirl. In: KDD, pp. 169–173 (1998)
Dagan, I., Itai, A.: Automatic processing of large corpora for the resolution of anaphora references. In: Proceedings of the 13th Conference on Computational Linguistics, vol. 3, pp. 330–332. Association for Computational Linguistics (1990)
Dann, S.: Twitter content classification. First Monday 15(12) (2010)
Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)
Davidov, D., Tsur, O., Rappoport, A.: Semi-supervised recognition of sarcastic sentences in twitter and amazon. In: Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pp. 107–116. Association for Computational Linguistics (2010)
Denber, M.: Automatic resolution of anaphora in english. Eastman Kodak Co. (1998)
Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of First ACM International Conference on Web Search and Data Mining (WSDM 2008), pp. 231–240. Stanford University, Stanford(2008)
Du, B., Tian, H., Wang, L., Lu, R.: Design of domain-specific term extractor based on multi-strategy. Computer Engineering 31(14), 159–160 (2005)
Elliott, C.D.: The Affective Reasoner: A Process Model of Emotions in a Multi-Agent System. PhD thesis, Northwestern University, Evanston (1992)
Gangemi, A., Presutti, V., Reforgiato, D.: Frame-based detection of opinion holders and topics: a model and a tool. IEEE Computational Intelligence Magazine 9(1), 20–30 (2014)
Gelfand, B., Wulfekuler, M., Punch, W.F.: Automated concept extraction from plain text. In: AAAI 1998 Workshop on Text Categorization, pp. 13–17 (1998)
Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: A deep learning approach. In: Proceedings of the Twenty-eight International Conference on Machine Learning, ICML (2011)
Goertzel, B., Silverman, K., Hartley, C., Bugaj, S., Ross, M.: The Baby Webmind project. In: AISB, Birmingham (2000)
González-Ibáñez, R., Muresan, S., Wacholder, N.: Identifying sarcasm in twitter: a closer look. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, vol. 2, pp. 581–586. Association for Computational Linguistics (2011)
Harlambous, Y., Klyuev, V.: Thematically reinforced explicit semantic analysis. International Journal of Computational Linguistics and Applications 4(1), 79–94 (2013)
Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th Conference on Computational Linguistics, vol. 2, pp. 539–545. Association for Computational Linguistics (1992)
Hobbs, J.R.: Resolving pronoun references. Lingua 44(4), 311–338 (1978)
Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM (1999)
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 168–177 (2004)
Hu, Y., Boyd-Graber, J., Satinoff, B., Smith, A.: Interactive topic modeling. Machine Learning 95(3), 423–469 (2014)
Jagarlamudi, J., Daumé III, H., Udupa, R.: Incorporating lexical priors into topic models. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 204–213. Association for Computational Linguistics (2012)
Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology 60(11), 2169–2188 (2009)
Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 151–160. Association for Computational Linguistics (2011)
Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, Springer, Heidelberg (1998)
Jung, S., Segev, A.: Analyzing future communities in growing citation networks. Knowledge-Based Systems 69, 34–44 (2014)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. CoRR, abs/1404.2188 (2014)
Kennedy, C., Boguraev, B.: Anaphora for everyone: pronominal anaphora resoluation without a parser. In: Proceedings of the 16th Conference on Computational Linguistics, vol. 1, pp. 113–118. Association for Computational Linguistics (1996)
Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the omg! In: ICWSM, vol. 11, pp. 538–541 (2011)
Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Computational linguistics 20(4), 535–561 (1994)
Li, X., Xie, H., Chen, L., Wang, J., Deng, X.: News impact on stock price return via sentiment analysis. Knowledge-Based Systems 69, 14–23 (2014)
Liang, T., Wu, D.-S.: Automatic pronominal anaphora resolution in english texts. In: ROCLING (2003)
Liebrecht, C.C., Kunneman, F.A., van den Bosch, A.P.J.: The perfect solution for detecting sarcasm in tweets# not. In: ACL (2013)
Liu, F., Weng, F., Wang, B., Liu, Y.: Insertion, deletion, or substitution?: normalizing text messages without pre-categorization nor supervision. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, vol. 2, pp. 71–76. Association for Computational Linguistics (2011)
Liu, L., Cao, C., Wang, H.: Acquiring hyponymy relations from large chinese corpus. WSEAS Transactions on Business and Economics 2(4), 211 (2005)
Liu, L., Cao, C.-G., Wang, H.-T., Chen, W.: A method of hyponym acquisition based on “isa” pattern. Journal of Computer Science, 146–151 (2006)
Lu, Y., Zhai, C.: Opinion integration through semi-supervised topic modeling. In: Proceedings of the 17th International Conference on World Wide Web, pp. 121–130. ACM (2008)
Lu, Y., Zhai, C.X., Sundaresan, N.: Rated aspect summarization of short comments. In: Proceedings of the 18th International Conference on World Wide Web, pp. 131–140. ACM (2009)
Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: Advances in Neural Information Processing Systems, pp. 121–128 (2008)
Mitkov, R.: Robust pronoun resolution with limited knowledge. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, vol. 2, pp. 869–875. Association for Computational Linguistics (1998)
Mitkov, R., Evans, R., Orăsan, C.: A new, fully automatic version of mitkov’s knowledge-poor pronoun resolution method. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 168–186. Springer, Heidelberg (2002)
Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. In: Proceedings of the Second Joint Conference on Lexical and Computational Semantics (SEMSTAR 2013) (2013)
Montejo-Raez, A., Diaz-Galiano, M., Martinez-Santiago, F., Urena-Lopez, A.: Crowd explicit sentiment analysis. Knowledge-Based Systems 69, 134–139 (2014)
Mukherjee, A., Liu, B.: Aspect extraction through semi-supervised modeling. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 339–348. Association for Computational Linguistics (2012)
Murphyp, G.L.: The big book of concepts. MIT Press (2002)
Murray, G., Carenini, G.: Subjectivity detection in spoken and written conversations. Natural Language Engineering 17, 397–418 (2011)
Nakata, K., Voss, A., Juhnke, M., Kreifelts, T.: Collaborative concept extraction from documents. In: Proceedings of the 2nd Int. Conf. on Practical Aspects of Knowledge management (PAKM 1998). Citeseer (1998)
Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using em. Machine Learning 39(2-3), 103–134 (2000)
O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: Linking text sentiment to public opinion time series. In: ICWSM, vol. 11, pp. 122–129 (2010)
Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)
Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC (2010)
Paltoglou, G., Thelwall, M.: Twitter, myspace, digg: Unsupervised sentiment analysis in social media. ACM Transactions on Intelligent Systems and Technology (TIST) 3(4), 66 (2012)
Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004) (2004)
Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: ACL, pp. 115–124. Ann Arbor (2005)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP, Philadelphia, pp. 79–86 (2002)
Polanyi, L., Zaenen, A.: Contextual valence shifters. In: Computing Attitude and Affect in text: Theory and Applications, pp. 1–10. Springer (2006)
Popescu, A.-M., Etzioni, O.: Extracting product features and opinions from reviews. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP 2005), pp. 3–28 (2005)
Poria, S., Agarwal, B., Gelbukh, A., Hussain, A., Howard, N.: Dependency-based semantic parsing for concept-level text analysis. In: Gelbukh, A. (ed.) CICLing 2014, Part I. LNCS, vol. 8403, pp. 113–127. Springer, Heidelberg (2014)
Poria, S., Cambria, E., Hussain, A., Huang, G.-B.: Towards an intelligent framework for multimodal affective data analysis. Neural Networks 63, 104–116 (2015)
Poria, S., Cambria, E., Ku, L.-W., Gui, C., Gelbukh, A.: A rule-based approach to aspect extraction from product reviews. In: COLING, Dublin, pp. 28–37 (2014)
Poria, S., Cambria, E., Winterstein, G., Huang, G.-B.: Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Knowledge-Based Systems 69, 45–63 (2014)
Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.-B.: EmoSenticSpace: A novel framework for affective common-sense reasoning. Knowledge-Based Systems 69, 108–123 (2014)
Rajagopal, D., Cambria, E., Olsher, D., Kwok, K.: A graph-based approach to commonsense concept extraction and semantic similarity detection. In: WWW, pp. 565–570. Rio De Janeiro (2013)
Ramirez, P.M., Mattmann, C.A.: Ace: improving search engines via automatic concept extraction. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, IRI 2004, pp. 229–234. IEEE (2004)
Rao, D., Ravichandran, D.: Semi-supervised polarity lexicon induction. In: EACL, Athens, pp. 675–682 (2009)
Read, J.: Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In: Proceedings of the ACL Student Research Workshop, pp. 43–48. Association for Computational Linguistics (2005)
Rill, S., Reinel, D., Scheidt, J., Zicari, R.: Politwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowledge-Based Systems 69, 14–23 (2014)
Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 105–112 (2003)
Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H., Jin, C.: Red opal: product-feature scoring from reviews. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 182–191. ACM (2007)
Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank (2013)
Somasundaran, S., Wiebe, J., Ruppenhofer, J.: Discourse level opinion interpretation. In: COLING, Manchester, pp. 801–808 (2008)
Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization using a probabilistic knowledgebase. In: IJCAI, Barcelona (2011)
Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 841–842. ACM (2010)
Stevenson, R., Mikels, J., James, T.: Characterization of the affective norms for english words by discrete emotional categories. Behavior Research Methods 39, 1020–1024 (2007)
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specificword embedding for twitter sentiment classification (2014)
Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th International Conference on World Wide Web, pp. 111–120. ACM (2008)
Tsur, O., Davidov, D., Rappoport, A.: Icwsm-a great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In: ICWSM (2010)
Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL, Philadelphia, pp. 417–424 (2002)
Turney, P., Littman, M.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21(4), 315–346 (2003)
Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to automatically enrich a domain ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems, vol. 2001, pp. 270–284. ACM (2001)
Velikovich, L., Goldensohn, S., Hannan, K., McDonald, R.: The viability of web-derived polarity lexicons. In: NAACL, Los Angeles, pp. 777–785 (2010)
Wang, F., Wang, Z., Li, Z., Wen, J.-R.: Concept-based short text classification and ranking. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1069–1078. ACM (2014)
Wang, H., Lu, Y., Zhai, C.: Latent aspect rating analysis on review text data: a rating regression approach. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 783–792. ACM (2010)
Wang, T., Cai, Y., Leung, H.-F., Lau, R.Y.K., Li, Q.: Huaqing Min. Product aspect extraction supervised with online domain knowledge. Knowledge-Based Systems 71, 86–100 (2014)
Wiebe, J., Riloff, E.: Creating subjective and objective sentence classifiers from unannotated texts. In: Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing, pp. 486–497 (2005)
Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Language Resources and Evaluation 39(2), 165–210 (2005)
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT/EMNLP, Vancouver (2005)
Yang, C., Lin, K.H., Chen, H.-H.: Emotion classification using web blog corpora. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 275–278. IEEE (2007)
Yuntao, Z., Ling, G., Yongcheng, W., Zhonghang, Y.: An effective concept extraction method for improving text classification performance. Geo-Spatial Information Science 6(4), 66–72 (2003)
Zhao, W.X., Jiang, J., Yan, H., Li, X.: Jointly modeling aspects and opinions with a maxent-lda hybrid. In: EMNLP, pp. 56–65. Association for Computational Linguistics (2010)
Zheng, J.H., Lu, J.L.: Study of an improved keywords distillation method. Computer Engineering 31(18), 194–196 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Cambria, E., Poria, S., Bisio, F., Bajpai, R., Chaturvedi, I. (2015). The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2015. Lecture Notes in Computer Science(), vol 9042. Springer, Cham. https://doi.org/10.1007/978-3-319-18117-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-18117-2_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18116-5
Online ISBN: 978-3-319-18117-2
eBook Packages: Computer ScienceComputer Science (R0)