Abstract
Due to the increasing number of mammograms in recent years, several techniques for automatic breast cancer recognition have been developed. These new methods have enabled the development of different Computer Aided Diagnosis systems often known by the acronym (CAD). The typical architecture of a CAD system is mainly composed of three major steps, features extraction, description and classification that leads to breast cancer recognition. In this chapter, and after presenting the features extraction approaches, we present geometric, morphologic and speculated mass descriptors. The comparison between new and very known descriptors, provides a considerable help on breast masses recognition. The recognition performance system is discussed through the obtained results using SVM classifier and ROC curves.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bottigli, U., Cascio, D., Fauci, F., Golosio, B., Magro, R., Masala, G. L., et al. (2006). Massive lesions classification using features based on morphological lesion differences. In Proceedings of World Academy of Science, Engineering and Technology (Vol. 12, pp. 20–24).
Brzakovic, D., Luo, X. M., & Brzakovic, P. (1990). An approach to automated detection of tumors in mammograms. IEEE Transactions on Medical Imaging, 9(3), 233–241.
Chan, T., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.
Cheikhrouhou I., Djemal, K., & Maaref, H. (2011). Protuberance selection descriptor for breast cancer diagnosis. In 3rd European Workshop on Visual Information Processing (EUVIP), Paris (pp. 280–285).
Cheikhrouhou I., Djemal, K., & Maaref, H. (2012). Characterization of mammographic masses using a new spiculated mass descriptor in computer aided diagnosis systems. International Journal of Signal and Imaging Systems Engineering, Inderscience, 5(2), 132–142.
Cheikhrouhou, I., Djemal, K., Sellami, D., Maaref, H., & Derbel, N. (2009). Empirical descriptors evaluation for mass malignity recognition. In The First International Workshop on Medical Image Analysis and Description for Diagnosis Systems - MIAD 2009 (pp. 91–100).
Chen, C. Y., Chiou, H. J., Chou, Y. H., Chiou, S. Y., Wang, H. K., Chou, S. Y., et al. (2009). Computer-aided diagnosis of soft tissue tumors on high-resolution ultrasonography with geometrical and morphological features. Academic Radiology, 16(5), 618–626.
Chen, C. M., Chou, Y. H., Han, K. C., Hung, G. S., Tiu, C. M., Chiou, H. J., et al. (2003). Breast lesions on sonograms. Computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology, 226, 504–514.
Ciatto, S., Turco, M. R. D., Risso, G., Catarzi, S., et al. (2003). Comparison of standard reading and computer aided detection (CAD) on a national proficiency test of screening mammography. European Journal of Radiology, 37(2), 135–138.
Delogu, P., Fantaccia, M. E., Kasae, P., & Retico, A. (2007). Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Computers in Biology and Medicine, 37(10), 1479–1491.
Djemal, K., Cocquerez, J. P., & Precioso, F. (2012). Visual feature extraction and description. In Visual indexing and retrieval book (pp. 5–20). New York: Springer. ISBN 978-1-4614- 3587-7.
Djemal, K., Puech, W., & Rossetto, B. (2006). Automatic active contours propagation in a sequence of medical images. International Journal of Images and Graphics, 6(2), 267–292.
Djemal, K., & Maaref, H. (2011). Intelligent information description and recognition in biomedical image databases. In B. Igelnik (Ed.), Computational modeling and simulation of intellect: Current state and future perspectives. Hershey, PA: IGI Global. ISBN: 978-1-60960-551-3.
D’Orsi, C. J., Bassett, L. W., Berg, W. A., Feig, S. A., Jackson, V. P., Kopans, D. B., et al. (2003). American college of radiology (Breast imaging reporting and data system). Troisième édition française réalisée par SFR (Société Française de Radiologie).
Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, P. (2000). The digital database for screening mammography. In 5th International Workshop on Digital Mammography, Toronto, Canada.
Jiang, H., Tiu, W., Yamamoto, S., & Iisaku, S. I. (1997). Automatic recognition of spicules in mammograms. In International Conference on Image Processing (pp. 520–523).
Kallergi, M., Woods, K., Clarke, L. P., Qian, W., & Clark, R. A. (1992). Image segmentation in digital mammography: Comparison of local thresholding and region growing algorithms. IEEE Transactions on Computerized Medical Imaging and Graphics, 16, 231–323.
Kilday, J., Palmieri, F., & Fox, M. D. (1993). Classifying mammographic lesions using computer-aided image analysis. IEEE Transactions on Medical Imaging, 12(4), 664–669.
Lee, Y. J., Park, J. M., & Park, H. W. (2000). Mammographic mass detection by adaptive thresholding and region growing. IEEE Transactions on International Journal of Imaging Systems and Technology, 11(5), 340–346.
Li, C., Kao, C. Y., Gore, J. C., & Ding, Z. (2008). Minimization of region-scalable fitting energy for image segmentation. IEEE Transaction of Image Processing, 17(10), 1940–1949.
Petrick, N., Chan, H. P., Sahiner, B., Wei, D., Helvie, M. A., Goodsitt, M. M., et al. (1995). Automated detection of breast masses on digital mammograms using adaptive density-weighted contrast-enhancement filtering. Proceedings of SPIE, Medical Imaging, Image Processing, 2434, 590–597.
Song, J. H., Venkatesh, S. S., Conant, E. A., Arger, P. H., & Sehgal, C. M. (2005). Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses. Academic Radiology, 12, 487–495.
Vapnik, V. (1998). Statistical learnig theory. New York: Wiley.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Djemal, K., Cheikhrouhou, I., Maaref, H. (2015). Mammographic Mass Description for Breast Cancer Recognition. In: Briassouli, A., Benois-Pineau, J., Hauptmann, A. (eds) Health Monitoring and Personalized Feedback using Multimedia Data. Springer, Cham. https://doi.org/10.1007/978-3-319-17963-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-17963-6_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17962-9
Online ISBN: 978-3-319-17963-6
eBook Packages: Computer ScienceComputer Science (R0)