Abstract
The last ten years were prolific in the statistical learning and data mining field and it is now easy to find learning algorithms which are fast and automatic. Historically a strong hypothesis was that all examples were available or can be loaded into memory so that learning algorithms can use them straight away. But recently new use cases generating lots of data came up as for example: monitoring of telecommunication network, user modeling in dynamic social network, web mining, etc. The volume of data increases rapidly and it is now necessary to use incremental learning algorithms on data streams. This article presents the main approaches of incremental supervised classification available in the literature. It aims to give basic knowledge to a reader novice in this subject.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This bound is not well used in many algorithms of incremental trees as explain in [55] but with not a very big influence on the results.
- 2.
Multi-armed bandits explore and exploit online set of decisions, while minimizing the cumulated regret between the chosen decisions and the optimal decision. Originally, multi-armed bandits have been used in pharmacology to choose the best drug while minimizing the number of tests. Today, they tend to replace A/B testing for web site optimization (Google analytics), they are used for ad-serving optimization. They are well designed when the true class to predict is not known: for instance, in some domains the learning algorithm receives only partial feedback upon its prediction, i.e. a single bit of right-or-wrong, rather than the true label.
- 3.
References
Guyon, I., Lemaire, V., Dror, G., Vogel, D.: Analysis of the kdd cup 2009: fast scoring on a large orange customer database. In: JMLR: Workshop and Conference Proceedings, vol. 7, pp. 1–22 (2009)
Féraud, R., Boullé, M., Clérot, F., Fessant, F., Lemaire, V.: The orange customer analysis platform. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 584–594. Springer, Heidelberg (2010)
Almaksour, A., Mouchère, H., Anquetil, E.: Apprentissage incrémental et synthèse de données pour la reconnaissance de caractères manuscrits en-ligne. In: Dixième Colloque International Francophone sur l’écrit et le Document (2009)
Saunier, N., Midenet, S., Grumbach, A.: Apprentissage incrémental par sélection de données dans un flux pour une application de securité routière. In: Conférence d’Apprentissage (CAP), pp. 239–251 (2004)
Provost, F., Kolluri, V.: A survey of methods for scaling up inductive algorithms. Data Min. Knowl. Discov. 3(2), 131–169 (1999)
Dean, T., Boddy, M.: An analysis of time-dependent planning. In: Proceedings of the Seventh National Conference on Artificial Intelligence, pp. 49–54 (1988)
Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In: Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 1041–1045 (1986)
Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC Press, Atlanta (2010)
Joaquin Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. MIT Press, Cambridge (2009)
Bondu, A., Lemaire, V.: Etat de l’art sur les methodes statistiques d’apprentissage actif. RNTI A2 Apprentissage artificiel et fouille de données, 189 (2008)
Cornuéjols, A.: On-line learning: where are we so far? In: May, M., Saitta, L. (eds.) Ubiquitous Knowledge Discovery. LNCS, vol. 6202, pp. 129–147. Springer, Heidelberg (2010)
Zilberstein, S., Russell, S.: Optimal composition of real-time systems. Artif. Intell. 82(1), 181–213 (1996)
Quinlan, J.R.: Learning efficient classification procedures and their application to chess end games. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning - An Artificial Intelligence Approach, pp. 463–482. Springer, Heidelberg (1986)
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman and Hall/CRC, Boca Raton (1984)
Cornuéjols, A., Miclet, L.: Apprentissage artificiel - Concepts et algorithmes. Eyrolles (2010)
Schlimmer, J., Fisher, D.: A case study of incremental concept induction. In: Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 496–501 (1986)
Utgoff, P.: Incremental induction of decision trees. Mach. Learn. 4(2), 161–186 (1989)
Utgoff, P., Berkman, N., Clouse, J.: Decision tree induction based on efficient tree restructuring. Mach. Learn. 29(1), 5–44 (1997)
Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, New York (1992)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Domeniconi, C., Gunopulos, D.: Incremental support vector machine construction. In: ICDM, pp. 589–592 (2001)
Syed, N., Liu, H., Sung, K.: Handling concept drifts in incremental learning with support vector machines. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 317–321. ACM, New York (1999)
Fung, G., Mangasarian, O.: Incremental support vector machine classification. In: Proceedings of the Second SIAM International Conference on Data Mining, Arlington, Virginia, pp. 247–260 (2002)
Bordes, A., Bottou, L.: The Huller: a simple and efficient online SVM. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 505–512. Springer, Heidelberg (2005)
Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classiffiers with online and active learning. J. Mach. Learn. Res. 6, 1579–1619 (2005)
Loosli, G., Canu, S., Bottou, L.: SVM et apprentissage des très grandes bases de données. In: Cap Conférence d’apprentissage (2006)
Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: measure and statistical validation. In: Guillet, F., Hamilton, H. (eds.) Quality Measures in Data Mining. SCI, vol. 43, pp. 251–275. Springer, Heidelberg (2007)
Schlimmer, J., Granger, R.: Incremental learning from noisy data. Mach. Learn. 1(3), 317–354 (1986)
Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)
Maloof, M., Michalski, R.: Selecting examples for partial memory learning. Mach. Learn. 41(1), 27–52 (2000)
Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: International Conference on Artificial Intelligence, pp. 223–228. AAAI (1992)
Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 130, 103–130 (1997)
Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, vol. 7. AAAI Press, Menlo Park (1996)
Heinz, C.: Density estimation over data streams (2007)
John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann (1995)
Lu, J., Yang, Y., Webb, G.I.: Incremental discretization for Naïve-Bayes classifier. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 223–238. Springer, Heidelberg (2006)
Aha, D.W. (ed.): Lazy Learning. Springer, New York (1997)
Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Min. Knowl. Discov. 6(2), 153–172 (2002)
Hooman, V., Li, C.S., Castelli, V.: Fast search and learning for fast similarity search. In: Storage and Retrieval for Media Databases, vol. 3972, pp. 32–42 (2000)
Moreno-Seco, F., Micó, L., Oncina, J.: Extending LAESA fast nearest neighbour algorithm to find the \(k\) nearest neighbours. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 718–724. Springer, Heidelberg (2002)
Kononenko, I., Robnik, M.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. J. 53, 23–69 (2003)
Globersonn, A., Roweis, S.: Metric learning by collapsing classes. In: Neural Information Processing Systems (NIPS) (2005)
Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. (JMLR) 10, 207–244 (2009)
Sankaranarayanan, J., Samet, H., Varshney, A.: A fast all nearest neighbor algorithm for applications involving large point-clouds. Comput. Graph. 31, 157–174 (2007)
Domingos, P., Hulten, G.: Catching up with the data: research issues in mining data streams. In: Workshop on Research Issues in Data Mining and Knowledge Discovery (2001)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence, Menlo Park (1996)
Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream processing. ACM SIGMOD Rec. 34(4), 42–47 (2005)
Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106. ACM, New York (2001)
Zighed, D., Rakotomalala, R.: Graphes d’induction: apprentissage et data mining. Hermes Science Publications, Paris (2000)
Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: a fast scalable classifier for data mining. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 18–34. Springer, Heidelberg (1996)
Shafer, J., Agrawal, R., Mehta, M.: SPRINT: a scalable parallel classifier for data mining. In: Proceedings of the International Conference on Very Large Data Bases, pp. 544–555 (1996)
Gehrke, J., Ramakrishnan, R., Ganti, V.: RainForest - a framework for fast decision tree construction of large datasets. Data Min. Knowl. Disc. 4(2), 127–162 (2000)
Oates, T., Jensen, D.: The effects of training set size on decision tree complexity. In: ICML 1997: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 254–262 (1997)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)
Matuszyk, P., Krempl, G., Spiliopoulou, M.: Correcting the usage of the hoeffding inequality in stream mining. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 298–309. Springer, Heidelberg (2013)
Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80. ACM, New York (2000)
Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 523–528. ACM, New York (2003)
Ramos-Jiménez, G., del Campo-Avila, J., Morales-Bueno, R.: Incremental algorithm driven by error margins. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 358–362. Springer, Heidelberg (2006)
del Campo-Avila, J., Ramos-Jiménez, G., Gama, J., Morales-Bueno, R.: Improving prediction accuracy of an incremental algorithm driven by error margins. Knowledge Discovery from Data Streams, 57 (2006)
Kirkby, R.: Improving hoeffding trees. Ph.D. thesis, University of Waikato (2008)
Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: ICML 1997: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 161–169. Morgan Kaufmann Publishers Inc., San Francisco (1997)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Robert, E., Freund, Y.: Boosting - Foundations and Algorithms. MIT Press, Cambridge (2012)
Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2003, pp. 226–235. ACM Press, New York (2003)
Seidl, T., Assent, I., Kranen, P., Krieger, R., Herrmann, J.: Indexing density models for incremental learning and anytime classification on data streams. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, pp. 311–322. ACM (2009)
Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)
Tsang, I., Kwok, J., Cheung, P.: Core vector machines: fast SVM training on very large data sets. J. Mach. Learn. Res. 6(1), 363 (2006)
Dong, J.X., Krzyzak, A., Suen, C.Y.: Fast SVM training algorithm with decomposition on very large data sets. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 603–618 (2005)
Usunier, N., Bordes, A., Bottou, L.: Guarantees for approximate incremental SVMs. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, vol. 9, pp. 884–891 (2010)
Do, T., Nguyen, V., Poulet, F.: GPU-based parallel SVM algorithm. Jisuanji Kexue yu Tansuo 3(4), 368–377 (2009)
Ferrer-Troyano, F., Aguilar-Ruiz, J.S., Riquelme, J.C.: Incremental rule learning based on example nearness from numerical data streams. In: Proceedings of the 2005 ACM Symposium on Applied Computing, p. 572. ACM (2005)
Ferrer-Troyano, F., Aguilar-Ruiz, J., Riquelme, J.: Data streams classification by incremental rule learning with parameterized generalization. In: Proceedings of the 2006 ACM Symposium on Applied Computing, p. 661. ACM (2006)
Gama, J.A., Kosina, P.: Learning decision rules from data streams. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 2, pp. 1255–1260. AAAI Press (2011)
Gama, J., Pinto, C.: Discretization from data streams: applications to histograms and data mining. In: Proceedings of the 2006 ACM Symposium on Applied (2006)
Gibbons, P., Matias, Y., Poosala, V.: Fast incremental maintenance of approximate histograms. ACM Trans. Database 27(3), 261–298 (2002)
Vitter, J.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)
Salperwyck, C., Lemaire, V., Hue, C.: Incremental weighted naive Bayes classifiers for data streams. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (2014)
Law, Y.-N., Zaniolo, C.: An adaptive nearest neighbor classification algorithm for data streams. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 108–120. Springer, Heidelberg (2005)
Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams. Intell. Data Anal. 11(6), 627–650 (2007)
Shaker, A., Hüllermeier, E.: Iblstreams: a system for instance-based classification and regression on data streams. Evolving Syst. 3(4), 235–249 (2012)
Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line learning algorithms. IEEE Trans. Inf. Theory 50(9), 2050–2057 (2004)
Block, H.: The perceptron: a model for brain functioning. Rev. Mod. Phys. 34, 123–135 (1962)
Novikoff, A.B.: On convergence proofs for perceptrons. In: Proceedings of the Symposium on the Mathematical Theory of Automata, vol. 12, pp. 615–622 (1963)
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)
Crammer, K., Kandola, J., Holloway, R., Singer, Y.: Online classification on a budget. In: Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2003)
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)
Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated sub-gradient solver for svm. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 807–814. ACM, New York (2007)
Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE Trans. Sig. Process. 52(8), 2165–2176 (2004)
Engel, Y., Mannor, S., Meir, R.: The kernel recursive least squares algorithm. IEEE Trans. Sig. Process. 52, 2275–2285 (2003)
Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Comput. 14(3), 641–668 (2002)
Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25, 285–294 (1933)
Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)
Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2003)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)
Sutskever, I.: A simpler unified analysis of budget perceptrons. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, 14–18 June, pp. 985–992 (2009)
Dekel, O., Shalev-Shwartz, S., Singer, Y.: The forgetron: a kernel-based perceptron on a budget. SIAM J. Comput. 37(5), 1342–1372 (2008)
Orabona, F., Keshet, J., Caputo, B.: The projectron: a bounded kernel-based perceptron. In: International Conference on Machine Learning (2008)
Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2009, p. 139 (2009)
Žliobaite, I.: Learning under concept drift: an overview. CoRR abs/1010.4784 (2010)
Lazarescu, M.M., Venkatesh, S., Bui, H.H.: Using multiple windows to track concept drift. Intell. Data Anal. 8(1), 29–59 (2004)
Bifet, A., Gama, J., Pechenizkiy, M., Žliobaite, I.: Pakdd tutorial: Handling concept drift: Importance, challenges and solutions (2011)
Marsland, S.: Novelty detection in learning systems. Neural Comput. Surv. 3, 157–195 (2003)
Faria, E.R., Goncalves, I.J.C.R., Gama, J., Carvalho, A.C.P.L.F.: Evaluation methodology for multiclass novelty detection algorithms. In: Brazilian Conference on Intelligent Systems, BRACIS 2013, Fortaleza, CE, Brazil, 19–24 October, pp. 19–25 (2013)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)
Baena-García, M., Del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)
Gama, J., Rodrigues, P.P., Sebastiao, R., Rodrigues, P.: Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 329–338. ACM, New York (2009)
Page, E.: Continuous inspection schemes. Biometrika 41(1–2), 100 (1954)
Mouss, H., Mouss, D., Mouss, N., Sefouhi, L.: Test of page-hinkley, an approach for fault detection in an agro-alimentary production system. In: 5th Asian Control Conference, vol. 2, pp. 815–818 (2004)
Bondu, A., Boullé, M.: A supervised approach for change detection in data streams (2011)
Boullé, M.: MODL: a Bayes optimal discretization method for continuous attributes. Mach. Learn. 65(1), 131–165 (2006)
Minku, L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24, 619–633 (2012)
Widmer, G., Kubat, M.: Learning flexible concepts from streams of examples: FLORA2. In: Proceedings of the 10th European Conference on Artificial Intelligence. Number section 5, pp. 463–467. Wiley (1992)
Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: SIGMOD, pp. 58–66 (2001)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Street, W., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382. ACM, New York (2001)
Kolter, J., Maloof, M.: Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Proceedings of the Third International IEEE Conference on Data Mining, pp. 123–130 (2003)
Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: SIAM International Conference on Data Mining, pp. 443–448 (2007)
Jaber, G.: An approach for online learning in the presence of concept changes. Ph.D. thesis, Université AgroParisTech (France) (2013)
Gama, J., Kosina, P.: Tracking recurring concepts with metalearners. In: Progress in Artificial Intelligence: 14th Portuguese Conference on Artificial Intelligence, p. 423 (2009)
Gomes, J.B., Menasalvas, E., Sousa, P.A.C.: Tracking recurrent concepts using context. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 168–177. Springer, Heidelberg (2010)
Salganicoff, M.: Tolerating concept and sampling shift in lazy learning using prediction error context switching. Artif. Intell. Rev. 11(1), 133–155 (1997)
Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: 2006 SIAM Conference on Data Mining, pp. 328–339 (2006)
Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)
Bifet, B., Gama, J., Gavalda, R., Krempl, G., Pechenizkiy, M., Pfahringer, B., Spiliopoulou, M., Žliobaite, I.: Advanced topics on data stream mining. Tutorial at the ECMLPKDD 2012 (2012)
Fawcett, T.: ROC graphs: notes and practical considerations for researchers. Mach. Learn. 31, 1–38 (2004)
Bifet, A., Read, J., Žliobaité, I., Pfahringer, B., Holmes, G.: Pitfalls in benchmarking data stream classification and how to avoid them. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part I. LNCS (LNAI), vol. 8188, pp. 465–479. Springer, Heidelberg (2013)
Žliobaité, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods and decision theory for classification of streaming data with temporal dependence. Mach. Learn. 98, 455–482 (2015)
Dawid, A.: Present position and potential developments: some personal views: statistical theory: the prequential approach. J. Roy. Stat. Soc. Ser. A (General) 147, 278–292 (1984)
Brzezinski, D., Stefanowski, J.: Prequential AUC for classifier evaluation and drift detection in evolving data streams. In: Proceedings of the Workshop New Frontiers in Mining Complex Patterns (NFMCP 2014) held in European Conference on Machine Learning (ECML) (2014)
Bifet, A.: Adaptive learning and mining for data streams and frequent patterns. Ph.D. thesis, Universitat Politécnica de Catalunya (2009)
Agrawal, R.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)
Gama, J., Medas, P., Rodrigues, P.: Learning decision trees from dynamic data streams. J. Univ. Comput. Sci. 11(8), 1353–1366 (2005)
Bifet, A., Kirkby, R.: Data stream mining a practical approach. J. Empirical Finance 8(3), 325–342 (2009)
Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set. In: Proceedings of the Second IEEE International Conference on Computational Intelligence for Security and Defense Applications, CISDA 2009, pp. 53–58. IEEE Press, Piscataway (2009)
Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowl. Inf. Syst. 22(3), 371–391 (2010)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Series in Data Management Systems, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Žliobaité, I., Budka, M., Stahl, F.: Towards cost-sensitive adaptation: when is it worth updating your predictive model? Neurocomputing 150, 240–249 (2014)
Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree learning from evolving data streams. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 299–310. Springer, Heidelberg (2010)
Littlestone, N., Warmuth, M.: The weighted majority algorithm. In: 30th Annual Symposium on Foundations of Computer Science, pp. 256–261 (1989)
Krempl, G., Žliobaite, I., Brzezinski, D., Hllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges for data stream mining research. SIGKDD Explorations (Special Issue on Big Data) 16, 1–10 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Lemaire, V., Salperwyck, C., Bondu, A. (2015). A Survey on Supervised Classification on Data Streams. In: Zimányi, E., Kutsche, RD. (eds) Business Intelligence. eBISS 2014. Lecture Notes in Business Information Processing, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-17551-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-17551-5_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17550-8
Online ISBN: 978-3-319-17551-5
eBook Packages: Computer ScienceComputer Science (R0)