Dual Multiobjective Quantum-Inspired Evolutionary Algorithm for a Sensor Arrangement in a 2D Environment | SpringerLink
Skip to main content

Dual Multiobjective Quantum-Inspired Evolutionary Algorithm for a Sensor Arrangement in a 2D Environment

  • Conference paper
Robot Intelligence Technology and Applications 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 345))

Abstract

This paper proposes dual multiobjective quantum-inspired evolutionary algorithm (DMQEA) for a sensor arrangement problem in a 2D environment. DMQEA has a dual stage of dominance check by introducing secondary objectives in addition to primary objectives. In an archive generation process, the secondary objectives are to maximize global evaluation values and crowding distances of the non-dominated solutions in the external global population and the previous archive. The proposed DMQEA is applied to the sensor arrangement problem to allocate the sensors considering three objectives: coverage rate, interference rate of each sensor, and the number of the sensors. The result of the sensor arrangement was successful enough to satisfy user’s preference for the objectives such that the sensors are placed on the proper positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: indoor location sensing using active rfid. Wireless Networks 10(6), 701–710 (2004)

    Article  Google Scholar 

  2. Kim, J.-H., Kim, Y.-H., Choi, S.-H., Park, I.-W.: Evolutionary Multi-objective Optimization in Robot Soccer System for Education. IEEE Computational Intelligence Magazine 4(1), 31–41 (2009)

    Article  MathSciNet  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. In: Proc. of EUROGEN, pp. 95–100 (2001)

    Google Scholar 

  5. Kim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., Kim, E.-S.: Preference-based solution selection algorithm for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 16(1), 20–34 (2012)

    Article  Google Scholar 

  6. Lee, K.-B., Kim, J.-H.: Multiobjective Particle Swarm Optimization With Preference-Based Sort and Its Application to Path Following Footstep Optimization for Humanoid Robots. IEEE Transactions on Evolutionary Computation 17(6), 755–766 (2013)

    Article  Google Scholar 

  7. Ryu, S.-J., Lee, K.-B., Kim, J.-H.: Improved Version of a Multiobjective Quantum-inspired Evolutionary Algorithm with Preference-based Selection. In: Proc. of IEEE World Congress on Computational Intelligence, pp. 1672–1678 (2012)

    Google Scholar 

  8. Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593 (2002)

    Article  Google Scholar 

  9. Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithms with a new termination criterion, Hε gate, and two phase scheme. IEEE Transactions on Evolutionary Computation 8(2), 156–169 (2004)

    Article  Google Scholar 

  10. Hey, T.: Quantum computing: an introduction. Computing and Control Engineering Journal 10(3), 105–112 (1999)

    Article  Google Scholar 

  11. Kim, Y.-H., Kim, J.-H., Han, K.-H.: Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems. In: Proc. of IEEE Congress on Evolutionary Computation, pp. 2601–2606 (2006)

    Google Scholar 

  12. Marichal, J.: An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems 8(6), 800–807 (2000)

    Article  MathSciNet  Google Scholar 

  13. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. In: Berichte aus der Informatik. Shaker Verlag, Aachen-Maastricht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Jung Ryu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ryu, SJ., Datta, R., Kim, JH. (2015). Dual Multiobjective Quantum-Inspired Evolutionary Algorithm for a Sensor Arrangement in a 2D Environment. In: Kim, JH., Yang, W., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 3. Advances in Intelligent Systems and Computing, vol 345. Springer, Cham. https://doi.org/10.1007/978-3-319-16841-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16841-8_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16840-1

  • Online ISBN: 978-3-319-16841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics