Abstract
We present how ubiquitous pressure sensor matrix can be used as information source for service-robots in two different applications. The textile pressure sensor, that utilizes the ubiquitousness of gravity, can be put on most surfaces in our environment to trace forces. As safety and human robot interaction are key factors for daily life service robots, we evaluated the pressure matrix in two scenarios: on the ground with toy furnitures demonstrating its capability for indoor localization and obstacle mapping, and on a sofa as an ubiquitous input device for giving commands to the robot in a natural way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
World Population Ageing 2013 report. Technical report, United Nations, Department of Economic and Social Affairs, Population Division (2013), http://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeingReport2013.pdf
World Robotics Industrial Robots 2013 - Summary; Service Robots 2013 - Summary. Technical report, IFR Statistical Department, VDMA Robotics and Automation association (2013), http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf
Zhou, B., Cheng, J., Sundholm, M., Lukowicz, P.: From smart clothing to smart table cloth: Design and implementation of a large scale, textile pressure matrix sensor. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) ARCS 2014. LNCS, vol. 8350, pp. 159–170. Springer, Heidelberg (2014)
Sundholm, M., Cheng, J., Zhou, B., Sethi, A., Lukowicz, P.: Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix. In: The ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2014) (to appear)
Cheng, J., Sundholm, M., Zhou, B., Kreil, M., Lukowicz, P.: Recognizing subtle user activities and person identity with cheap resistive pressure sensing carpet. In: International Conference on Intelligent Environments (IE-14) (to appear)
Tan, H., Slivovsky, L., Pentland, A.: A sensing chair using pressure distribution sensors. IEEE/ASME Transactions on Mechatronics 6(3), 261–268 (2001)
Verver, M., Van Hoof, J., Oomens, C., Wismans, J., Baaijens, F.: A finite element model of the human buttocks for prediction of seat pressure distributions. Computer Methods in Biomechanics and Biomedical Engineering 7(4), 193–203 (2004)
Xie, X., Zheng, B., Xue, W.: Object identification on car seat based on rough sets. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 157–159 (2011)
Kortelainen, J., van Gils, M., Parkka, J.: Multichannel bed pressure sensor for sleep monitoring. In: Computing in Cardiology (CinC), pp. 313–316 (2012)
Lokavee, S., Puntheeranurak, T., Kerdcharoen, T., Watthanwisuth, N., Tuantranont, A.: Sensor pillow and bed sheet system: Unconstrained monitoring of respiration rate and posture movements during sleep. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1564–1568 (2012)
De Rossi, S., Lenzi, T., Vitiello, N., Donati, M., Persichetti, A., Giovacchini, F., Vecchi, F., Carrozza, M.: Development of an in-shoe pressure-sensitive device for gait analysis. In: 33rd Annual International Conference of the IEEE EMBS (2011)
Xu, W., Huang, M.C., Amini, N., He, L., Sarrafzadeh, M.: ecushion: A textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sensors Journal 13(10), 3926–3934 (2013)
Alavi, B., Pahlavan, K.: Modeling of the toa-based distance measurement error using uwb indoor radio measurements. IEEE Communications Letters 10(4), 275–277 (2006)
Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 173–184. ACM (2010)
Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. Eurasip Journal on Applied Signal Processing 2006, 164–164 (2006)
Leppäkoski, H., Collin, J., Takala, J.: Pedestrian navigation based on inertial sensors, indoor map, and wlan signals. Journal of Signal Processing Systems 71(3), 287–296 (2013)
Pirkl, G., Lukowicz, P.: Robust, low cost indoor positioning using magnetic resonant coupling. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 431–440. ACM (2012)
Sanpechuda, T., Kovavisaruch, L.: A review of rfid localization: Applications and techniques. In: 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2008, vol. 2, pp. 769–772. IEEE (2008)
DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)
Song, P., Yu, H., Winkler, S.: Vision-based 3d finger interactions for mixed reality games with physics simulation. In: Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, p. 7. ACM (2008)
Bränzel, A., Holz, C., Hoffmann, D., Schmidt, D., Knaust, M., Lühne, P., Meusel, R., Richter, S., Baudisch, P.: Gravityspace: Tracking users and their poses in a smart room using a pressure-sensing floor. In: CHI 2013, Paris, France, April 27-May 2 (2013)
Ballagas, R., Borchers, J., Rohs, M., Sheridan, J.G.: The smart phone: a ubiquitous input device. IEEE Pervasive Computing 5(1), 70–77 (2006)
Jaimes, A., Sebe, N.: Multimodal human–computer interaction: A survey. Computer Vision and Image Understanding 108(1), 116–134 (2007)
Sefar (July 2014), http://www.sefar.com/
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1983)
Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of the Sixth International Conference on Computer Vision, ICCV 1998, p. 555. IEEE Computer Society, Washington, DC (1998)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (December 2006)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)
Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82(Series D), 35–45 (1960)
Buxton, W.A.S.: The three mirrors of interaction: a holistic approach to user interfaces. In: MacDonald, L.W., Vince, J. (eds.) Interacting with Virtual Environments, pp. 1–12. Wiley (1994)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)
Trier, O.D., Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-a survey. Pattern Recognition 29(4), 641–662 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Cheng, J., Sundholm, M., Hirsch, M., Zhou, B., Palacio, S., Lukowicz, P. (2015). Application Exploring of Ubiquitous Pressure Sensitive Matrix as Input Resource for Home-Service Robots. In: Kim, JH., Yang, W., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 3. Advances in Intelligent Systems and Computing, vol 345. Springer, Cham. https://doi.org/10.1007/978-3-319-16841-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-16841-8_33
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16840-1
Online ISBN: 978-3-319-16841-8
eBook Packages: EngineeringEngineering (R0)