Fully Automatic Segmentation of Hip CT Images via Random Forest Regression-Based Atlas Selection and Optimal Graph Search-Based Surface Detection | SpringerLink
Skip to main content

Fully Automatic Segmentation of Hip CT Images via Random Forest Regression-Based Atlas Selection and Optimal Graph Search-Based Surface Detection

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

  • 2738 Accesses

Abstract

Automatic extraction of surface models of both pelvis and proximal femur of a hip joint from 3D CT images is an important and challenging task for computer assisted diagnosis and planning of periacetabular osteotomy (PAO). Due to the narrowness of hip joint space, the adjacent surfaces of the acetabulum and the femoral head are hardly distinguishable from each other in the target CT images. This paper presents a fully automatic method for segmenting hip CT images using random forest (RF) regression-based atlas selection and optimal graph search-based surface detection. The two fundamental contributions of our method are: (1) An efficient RF regression framework is developed for a fast and accurate landmark detection from the hip CT images. The detected landmarks allow for not only a robust and accurate initialization of the atlases within the target image space but also an effective selection of a subset of atlases for a fast atlas-based segmentation; and (2) 3-D graph theory-based optimal surface detection is used to refine the extraction of the surfaces of the acetabulum and the femoral head with the ultimate goal to preserve hip joint structure and to avoid penetration between the two extracted surfaces. Validation on 30 hip CT images shows that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur with an average accuracy of 0.56 mm, 0.61 mm, and 0.57 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganz, R., Klaue, K., Vinh, T., Mast, J.: A new periacetabular osteotomy for the treatment of hip dysplasia: technique and preliminary results. Clin. Orthop. 232, 26–36 (1988)

    Google Scholar 

  2. Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Sato, Y.: Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 811–818. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Seim, H., Kainmueller, D., Heller, M., Lamecker, H., Zachow, S., Hege, H.C.: Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. In: Eurographics Workshop on Visual Computing for Biomedicine, pp. 67–78 (2008)

    Google Scholar 

  5. Kainmueller, D., Lamecker, H., Zachow, S., Hege, H.C.: An articulated statistical shape model for accurate hip joint segmentation. In: IEEE EMBC 2009, pp. 6345–6351 (2009)

    Google Scholar 

  6. Ehrhardte, J., Handels, H., Plotz, W., Poppl, S.J.: Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters. Methods Inf. Med. 43, 391–397 (2004)

    Google Scholar 

  7. Pettersson, J., Knutsson, H., Borga., M.: Automatic hip bone segmentation using non-rigid registration. In: ICPR 2006 (2006)

    Google Scholar 

  8. Ying, X., Jurgen, F., Shekhar, S., Raphael, S., Craig, E., Stuart, C.: Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys. Med. Biol. 58, 7375–7390 (2013)

    Article  Google Scholar 

  9. Lamecker, H., Seeba, M., Hege, H.C., Deuflhard, P.: A 3D statistical shape model of the pelvic bone for segmentation. In: SPIE, vol. 5370, pp. 1341–1351 (2004)

    Google Scholar 

  10. Kainmueller, D., Lamecker, H., Zachow, S., Hege, H.-C.: coupling deformable models for multi-object segmentation. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 69–78. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Li, K., Wu, X., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric images - a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Itell. 28, 119–134 (2006)

    Article  Google Scholar 

  12. Song, Q., Wu, X., Liu, Y., Smith, M., Buatti, J., Sonka, M.: Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 827–835. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)

    Google Scholar 

  14. Lindner, C., Thiagarajah, S., Wilkinson, J.M., arcOGEN Consortium, Wallis, G., Cootes, T.F.: Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE TMI 32, 1462–1472 (2013)

    Google Scholar 

  15. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  16. Yang, C., Duraiswami, R., Davis, L.: Efficient kernel machines using the improved fast gauss transform. In: Advances in Neural Information Processing Systems, vol. 17, pp. 1561–1568 (2005)

    Google Scholar 

  17. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001, vol. I, pp. 511–518 (2001)

    Google Scholar 

  18. Glocker, B., Komodakis, M., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through mrfs and efficient linear programming. Med. Image Anal. 12, 731–741 (2008)

    Article  Google Scholar 

  19. Chu, C., et al.: Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 165–172. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23, 1222–1239 (2001)

    Article  Google Scholar 

  21. Liu, L., Ecker, T., Schumann, S., Siebenrock, K., Nolte, L., Zheng, G.: Computer assisted planning and navigation of periacetabular osteotomy with range of motion optimization. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 643–650. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. PAMI 26, 147–159 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chu, C., Bai, J., Liu, L., Wu, X., Zheng, G. (2015). Fully Automatic Segmentation of Hip CT Images via Random Forest Regression-Based Atlas Selection and Optimal Graph Search-Based Surface Detection. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics