A Comparative Study of GPU-Accelerated Multi-view Sequential Reconstruction Triangulation Methods for Large-Scale Scenes | SpringerLink
Skip to main content

A Comparative Study of GPU-Accelerated Multi-view Sequential Reconstruction Triangulation Methods for Large-Scale Scenes

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9008))

Included in the following conference series:

  • 1912 Accesses

Abstract

The angular error-based triangulation method and the parallax path method are both high-performance methods for large-scale multi-view sequential reconstruction that can be parallelized on the GPU. We map parallax paths to the GPU and test its performance and accuracy as a triangulation method for the first time. To this end, we compare it with the angular method on the GPU for both performance and accuracy. Furthermore, we improve the recovery of path scales and perform more extensive analysis and testing compared with the original parallax paths method. Although parallax paths requires sequential and piecewise-planar camera positions, in such scenarios, we can achieve a speedup of up to 14x over angular triangulation, while maintaining comparable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hess-Flores, M., Duchaineau, M.A., Joy, K.I.: Sequential reconstruction segment-wise feature track and structure updating based on parallax paths. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 636–649. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Recker, S., Hess-Flores, M., Joy, K.I.: Statistical angular error-based triangulation for efficient and accurate multi-view scene reconstruction. In: Workshop on the Applications of Computer Vision (WACV), pp. 68–75 (2013)

    Google Scholar 

  3. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2006)

    Google Scholar 

  4. Strecha, C., von Hansen, W., Gool, L.J.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  5. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59, 207–232 (2004)

    Article  Google Scholar 

  6. Nistér, D.: Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 649–663. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Fitzgibbon, A.W., Cross, G., Zisserman, A.: Automatic 3D model construction for turn-table sequences. In: Koch, R., Van Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, p. 155. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Wu, C.: VisualSfM: A visual structure from motion system (2011). http://ccwu.me/vsfm/

  9. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25, 835–846 (2006)

    Article  Google Scholar 

  10. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  11. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Agarwal, S., Chandraker, M.K., Kahl, F., Kriegman, D.J., Belongie, S.: Practical global optimization for multiview geometry. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 592–605. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Hartley, R.I., Kahl, F.: Optimal algorithms in multiview geometry. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 13–34. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Min, Y.: L-Infinity norm minimization in the multiview triangulation. In: Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds.) AICI 2010. LNCS (LNAI), vol. 6319, pp. 488–494. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Dai, Z., Wu, Y., Zhang, F., Wang, H.: A novel fast method for \(L_{\infty }\) problems in multiview geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 116–129. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Applied Optimization, vol. 97, 2nd edn. Springer-Verlag New York, Inc., Secaucus (2005)

    Google Scholar 

  17. Sánchez, J.R., Álvarez, H., Borro, D.: GFT: GPU fast triangulation of 3D points. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 235–242. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Sánchez, J.R., Álvarez, H., Borro, D.: GPU optimizer: a 3D reconstruction on the GPU using Monte Carlo simulations - how to get real time without sacrificing precision. In: Proceedings of the 2010 International Conference on Computer Vision Theory and Applications, pp. 443–446 (2010)

    Google Scholar 

  19. Lourakis, M.I.A., Argyros, A.A.: The design and implementation of a generic sparse bundle adjustment software package based on the Levenberg-Marquardt algorithm. Technical Report FORTH-ICS TR-340-2004, Institute of Computer Science - FORTH (2004)

    Google Scholar 

  20. Mak, J., Hess-Flores, M., Recker, S., Owens, J.D., Joy, K.I.: GPU-accelerated and efficient multi-view triangulation for scene reconstruction. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, WACV 2014, pp. 61–68 (2014)

    Google Scholar 

  21. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Fischler, M.A., Firschein, O. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 726–740. Morgan Kaufmann Publishers Inc., San Francisco (1987)

    Chapter  Google Scholar 

  22. Nistér, D.: Frame decimation for structure and motion. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A.W. (eds.) SMILE 2000. LNCS, vol. 2018, p. 17. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. ACM Queue 6, 40–53 (2008)

    Article  Google Scholar 

  24. Oxford Visual Geometry Group: Multi-view and Oxford Colleges building reconstruction (2009). http://www.robots.ox.ac.uk/~vgg/

  25. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 800–807 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Mak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mak, J., Hess-Flores, M., Recker, S., Owens, J.D., Joy, K.I. (2015). A Comparative Study of GPU-Accelerated Multi-view Sequential Reconstruction Triangulation Methods for Large-Scale Scenes. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9008. Springer, Cham. https://doi.org/10.1007/978-3-319-16628-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16628-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16627-8

  • Online ISBN: 978-3-319-16628-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics