Abstract
Recently, the interest on multiobjective optimization problems with a large number of decision variables has grown since many significant real problems, for example on machine learning and pattern recognition, imply to process patterns with a high number of components (features). This paper deals with parallel multiobjective optimization on high-dimensional feature selection problems. Thus, several parallel multiobjective evolutionary alternatives based on the cooperation of subpopulations are proposed and experimentally evaluated by using some synthetic and BCI (Brain-Computer Interface) benchmarks. The results obtained show different improvements achieved in the solution quality and speedups, depending on the parallel alternative and benchmark profile. Some alternatives even provide superlinear speedups with only small reductions in the solution quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Durillo, J., Nebro, A., Coello Coello, C.A., García-Nieto, J., Luna, F., Alba, E.: A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans. Evol. Comput. 14(4), 618–635 (2010)
Antonio, L.M., Coello Coello, C.A.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: IEEE Congress on Ecolutionary Computation, pp. 2758–2765, 20–23 June 2013, Cancún, Mexico, vol. 43, no. 2, pp. 445–463 (2013)
Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)
Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)
Acir, N., Güzeliş, C.: An application of support vector machine in bioinformatics: automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 462–471. Springer, Heidelberg (2004)
Sun, Z.: Parallel feature selection based on MapReduce. In: Wong, W.E., Zhu, T. (eds.) Computer Engineering and Networking. LNEE, vol. 277, pp. 299–306. Springer, Heidelberg (2012)
Zao, Z., Zhang, R., Cox, J., Duling, D., Sarle, W.: Massively parallel feature selection: an approach based on variance preservation. Mach. Learn. 92, 195–220 (2013)
de Souza, J.T., Matwin, S., Japkowitz, N.: Parallelizing feature selection. Algoritmica 45, 433–456 (2006)
Handl, J., Knowles, J.: Feature selection in unsupervised learning via multi-objective optimization. Int. J. Comput. Intell. Res. 2(3), 217–238 (2006)
Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82(1), 7–13 (2002)
Potter, M., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)
Coello Coello, C.A., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems (Chapter 3), 2nd edn. Springer, New York (2007)
Mao, J., Hirasawa, K., Murata, J.: Genetic symbiosis algorithm for multi-objective optimization problem. In: Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communication, pp. 137–142 (2000)
Keerativuttitumrong, N., Chaiyaratana, N., Varavithya, V.: Multi-objective co-operative co-evolutionary genetic algorithm. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 288–297. Springer, Heidelberg (2002)
Coello Coello, C.A., Sierra, M.R.: A coevolutionary multi-objective evolutionary algorithm. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 482–489 (2003)
Maneeratana, K., Boonlong, K., Chaiyaratana, N.: Multi-objective optimisation by co-operative co-evolution. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 772–781. Springer, Heidelberg (2004)
Iorio, A.W., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 537–548. Springer, Heidelberg (2004)
Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans. Evol. Comput. 10(5), 527–549 (2006)
Goh, C.-K., Tan, K.C.: A coevolutionary paradigm for dynamic multi-objective optimization. In: Goh, C.-K., Tan, K.C. (eds.) Evolutionary Multi-objective Optimization in Uncertain Environments. SCI, vol. 186, pp. 153–185. Springer, Heidelberg (2009)
Dorronsoro, B., Danoy, G., Nebro, A.J., Boubry, P.: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution. Comput. Oper. Res. 40, 1552–1563 (2013)
Kohonen, T.: Self-organizing Maps. Springer, Heidelberg (2001)
Kimovski, D., Ortega, J., Ortiz, A., Baños, R.: Feature selection in high-dimensional EEG data by parallel multi-objective optimization. In: Proceedings of the IEEE Cluster, Madrid, pp. 314–322 (2014)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithms for multi-objective optimisation: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, New York (2009)
Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)
Aknowledgements
This work has been funded by projects TIN2012-32039 (Spanish “Ministerio de Economía y Competitividad” and FEDER funds) and P11-TIC-7983 (“Junta de Andalucía”).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kimovski, D., Ortega, J., Ortiz, A., Baños, R. (2015). Parallel Cooperation for Large-Scale Multiobjective Optimization on Feature Selection Problems. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_56
Download citation
DOI: https://doi.org/10.1007/978-3-319-16549-3_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16548-6
Online ISBN: 978-3-319-16549-3
eBook Packages: Computer ScienceComputer Science (R0)