Parallel Cooperation for Large-Scale Multiobjective Optimization on Feature Selection Problems | SpringerLink
Skip to main content

Parallel Cooperation for Large-Scale Multiobjective Optimization on Feature Selection Problems

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9028))

Included in the following conference series:

  • 1930 Accesses

Abstract

Recently, the interest on multiobjective optimization problems with a large number of decision variables has grown since many significant real problems, for example on machine learning and pattern recognition, imply to process patterns with a high number of components (features). This paper deals with parallel multiobjective optimization on high-dimensional feature selection problems. Thus, several parallel multiobjective evolutionary alternatives based on the cooperation of subpopulations are proposed and experimentally evaluated by using some synthetic and BCI (Brain-Computer Interface) benchmarks. The results obtained show different improvements achieved in the solution quality and speedups, depending on the parallel alternative and benchmark profile. Some alternatives even provide superlinear speedups with only small reductions in the solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Durillo, J., Nebro, A., Coello Coello, C.A., García-Nieto, J., Luna, F., Alba, E.: A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans. Evol. Comput. 14(4), 618–635 (2010)

    Article  Google Scholar 

  2. Antonio, L.M., Coello Coello, C.A.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: IEEE Congress on Ecolutionary Computation, pp. 2758–2765, 20–23 June 2013, Cancún, Mexico, vol. 43, no. 2, pp. 445–463 (2013)

    Google Scholar 

  3. Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)

    Article  Google Scholar 

  4. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  5. Acir, N., Güzeliş, C.: An application of support vector machine in bioinformatics: automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 462–471. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Sun, Z.: Parallel feature selection based on MapReduce. In: Wong, W.E., Zhu, T. (eds.) Computer Engineering and Networking. LNEE, vol. 277, pp. 299–306. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Zao, Z., Zhang, R., Cox, J., Duling, D., Sarle, W.: Massively parallel feature selection: an approach based on variance preservation. Mach. Learn. 92, 195–220 (2013)

    Article  MathSciNet  Google Scholar 

  8. de Souza, J.T., Matwin, S., Japkowitz, N.: Parallelizing feature selection. Algoritmica 45, 433–456 (2006)

    Article  MATH  Google Scholar 

  9. Handl, J., Knowles, J.: Feature selection in unsupervised learning via multi-objective optimization. Int. J. Comput. Intell. Res. 2(3), 217–238 (2006)

    MathSciNet  Google Scholar 

  10. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82(1), 7–13 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Potter, M., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Coello Coello, C.A., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems (Chapter 3), 2nd edn. Springer, New York (2007)

    Google Scholar 

  13. Mao, J., Hirasawa, K., Murata, J.: Genetic symbiosis algorithm for multi-objective optimization problem. In: Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communication, pp. 137–142 (2000)

    Google Scholar 

  14. Keerativuttitumrong, N., Chaiyaratana, N., Varavithya, V.: Multi-objective co-operative co-evolutionary genetic algorithm. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 288–297. Springer, Heidelberg (2002)

    Google Scholar 

  15. Coello Coello, C.A., Sierra, M.R.: A coevolutionary multi-objective evolutionary algorithm. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 482–489 (2003)

    Google Scholar 

  16. Maneeratana, K., Boonlong, K., Chaiyaratana, N.: Multi-objective optimisation by co-operative co-evolution. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 772–781. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Iorio, A.W., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 537–548. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans. Evol. Comput. 10(5), 527–549 (2006)

    Article  Google Scholar 

  19. Goh, C.-K., Tan, K.C.: A coevolutionary paradigm for dynamic multi-objective optimization. In: Goh, C.-K., Tan, K.C. (eds.) Evolutionary Multi-objective Optimization in Uncertain Environments. SCI, vol. 186, pp. 153–185. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Dorronsoro, B., Danoy, G., Nebro, A.J., Boubry, P.: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution. Comput. Oper. Res. 40, 1552–1563 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kohonen, T.: Self-organizing Maps. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  22. Kimovski, D., Ortega, J., Ortiz, A., Baños, R.: Feature selection in high-dimensional EEG data by parallel multi-objective optimization. In: Proceedings of the IEEE Cluster, Madrid, pp. 314–322 (2014)

    Google Scholar 

  23. https://sites.google.com/site/projectbci/

  24. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithms for multi-objective optimisation: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, New York (2009)

    Google Scholar 

  26. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  27. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)

    Article  Google Scholar 

Download references

Aknowledgements

This work has been funded by projects TIN2012-32039 (Spanish “Ministerio de Economía y Competitividad” and FEDER funds) and P11-TIC-7983 (“Junta de Andalucía”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kimovski, D., Ortega, J., Ortiz, A., Baños, R. (2015). Parallel Cooperation for Large-Scale Multiobjective Optimization on Feature Selection Problems. In: Mora, A., Squillero, G. (eds) Applications of Evolutionary Computation. EvoApplications 2015. Lecture Notes in Computer Science(), vol 9028. Springer, Cham. https://doi.org/10.1007/978-3-319-16549-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16549-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16548-6

  • Online ISBN: 978-3-319-16549-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics