Towards Precise Segmentation of Corneal Endothelial Cells | SpringerLink
Skip to main content

Towards Precise Segmentation of Corneal Endothelial Cells

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9043))

Included in the following conference series:

  • 2560 Accesses

Abstract

This article describes an algorithm for defining the precise, objective, repeatable and unambiguous segmentation of cells in images of the corneal endothelium. This issue is important for clinical purposes, because the quality of the grid cells is assessed on the basis of segmentation. Other solutions, including commercial software, do not always mark cell boundaries along lines of lowest brightness.

The proposed algorithm is comprised of two parts. The first part determines the number of neighbors of less than or equal brightness to each image point in the input image, then a custom-made segmentation of the binary image is performed on the basis of the constructed map. Each of the 9 iterations of the segmentation considers a number of neighboring points equal to the iteration index, thinning them if they have equal or lower value than the analyzed input point, which allows the boundaries to be routed between cells through the darkest points, thus defining an objective and unambiguous selection of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Engineer 29(6), 33–41 (1984)

    Google Scholar 

  2. Charłampowicz, K., Reska, D., Boldak, C.: Automatic segmentation of corneal endothelial cells using active contours. Advances in Computer Science Research 11, 47–60 (2014)

    Google Scholar 

  3. Doughty, M.: The ambiguous coefficient of variation: Polymegethism of the corneal endothelium and central corneal thickness. International Contact Lens Clinic 17(9-10) (1990)

    Google Scholar 

  4. Doughty, M.: Concerning the symmetry of the ‘hexagonal’ cells of the corneal endothelium. Experimental Eye Research 55(1), 145–154 (1992)

    Article  Google Scholar 

  5. Fabijańska, A., Sankowski, D.: Noise adaptive switching median-based filter for impulse noise removal from extremely corrupted images. IET Image Processing 5(5), 472–480 (2011)

    Article  Google Scholar 

  6. Gronkowska-Serafin, J., Piórkowski, A.: Corneal endothelial grid structure factor based on coefficient of variation of the cell sides lengths. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. AISC, vol. 233, pp. 13–20. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Habrat, K.: Binarization of corneal endothelial digital images. Master’s thesis, AGH University of Science and Technology (2012)

    Google Scholar 

  8. Khan, M.A.U., Niazi, M.K.K., Khan, M.A., Ibrahim, M.T.: Endothelial cell image enhancement using non-subsampled image pyramid. Information Technology Journal 6(7), 1057–1062 (2007)

    Article  Google Scholar 

  9. Korkosz, M., Bielecka, M., Bielecki, A., Skomorowski, M., Wojciechowski, W., Wójtowicz, T.: Improved fuzzy entropy algorithm for x-ray pictures preprocessing. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 268–275. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Mahzoun, M., Okazaki, K., Mitsumoto, H., Kawai, H., Sato, Y., Tamura, S., Kani, K.: Detection and complement of hexagonal borders in corneal endothelial cell image. Medical Imaging Technology 14(1), 56–69 (1996)

    Google Scholar 

  11. Nadachi, R., Nunokawa, K.: Automated corneal endothelial cell analysis. In: Proceedings of Fifth Annual IEEE Symposium on Computer-Based Medical Systems, pp. 450–457. IEEE (1992)

    Google Scholar 

  12. Ogiela, M., Tadeusiewicz, R.: Artificial intelligence methods in shape feature analysis of selected organs in medical images. Image Processing and Communications 6, 3–11 (2000)

    Google Scholar 

  13. Pavlidis, T.: Algorithms for graphics and image processing. Computer science press (1982)

    Google Scholar 

  14. Piorkowski, A., Gronkowska-Serafin, J.: Analysis of corneal endothelial image using classic image processing methods. In: KOWBAN - XVIII The Computer-Aided Scientific Research. The Works of Wroclaw Scientific Society, B, vol. 217, pp. 283–290. Wroclawskie Towarzystwo Naukowe (2011)

    Google Scholar 

  15. Piorkowski, A., Gronkowska-Serafin, J.: Selected issues of corneal endothelial image segmentation. Journal of Medical Informatics & Technologies 17, 239–245 (2011)

    Google Scholar 

  16. Piórkowski, A., Gronkowska–Serafin, J.: Towards automated cell segmentation in corneal endothelium images. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 6. AISC, vol. 313, pp. 181–189. Springer, Heidelberg (2015)

    Google Scholar 

  17. Piórkowski, A., Mazurek, P., Gronkowska–Serafin, J.: Comparison of assessment regularity methods dedicated to isotropic cells structures analysis. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 6. AISC, vol. 313, pp. 171–180. Springer, Heidelberg (2015)

    Google Scholar 

  18. Placzek, B.: Rough sets in identification of cellular automata for medical image processing. Journal of Medical Informatics & Technologies 22, 161–168 (2013)

    Google Scholar 

  19. Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics 8(8), 630–632 (1978)

    Article  Google Scholar 

  20. Saeed, K., Tabędzki, M., Rybnik, M., Adamski, M.: K3M: A universal algorithm for image skeletonization and a review of thinning techniques. International Journal of Applied Mathematics and Computer Science 20(2), 317–335 (2010)

    Article  MATH  Google Scholar 

  21. Sanchez-Marin, F.J.: Automatic segmentation of contours of corneal cells. Computers in Biology and Medicine 29(4), 243–258 (1999)

    Article  Google Scholar 

  22. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognition 33(2), 225–236 (2000)

    Article  Google Scholar 

  23. Serra, J., Mlynarczuk, M.: Morphological merging of multidimensional data. In: Proceedings of STERMAT 2000, pp. 385–390 (2000)

    Google Scholar 

  24. Szostek, K., Gronkowska-Serafin, J., Piorkowski, A.: Problems of corneal endothelial image binarization. Schedae Informaticae 20, 211–218 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Piórkowski, A., Gronkowska–Serafin, J. (2015). Towards Precise Segmentation of Corneal Endothelial Cells. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics