Abstract
This article describes an algorithm for defining the precise, objective, repeatable and unambiguous segmentation of cells in images of the corneal endothelium. This issue is important for clinical purposes, because the quality of the grid cells is assessed on the basis of segmentation. Other solutions, including commercial software, do not always mark cell boundaries along lines of lowest brightness.
The proposed algorithm is comprised of two parts. The first part determines the number of neighbors of less than or equal brightness to each image point in the input image, then a custom-made segmentation of the binary image is performed on the basis of the constructed map. Each of the 9 iterations of the segmentation considers a number of neighboring points equal to the iteration index, thinning them if they have equal or lower value than the analyzed input point, which allows the boundaries to be routed between cells through the darkest points, thus defining an objective and unambiguous selection of cells.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Engineer 29(6), 33–41 (1984)
Charłampowicz, K., Reska, D., Boldak, C.: Automatic segmentation of corneal endothelial cells using active contours. Advances in Computer Science Research 11, 47–60 (2014)
Doughty, M.: The ambiguous coefficient of variation: Polymegethism of the corneal endothelium and central corneal thickness. International Contact Lens Clinic 17(9-10) (1990)
Doughty, M.: Concerning the symmetry of the ‘hexagonal’ cells of the corneal endothelium. Experimental Eye Research 55(1), 145–154 (1992)
Fabijańska, A., Sankowski, D.: Noise adaptive switching median-based filter for impulse noise removal from extremely corrupted images. IET Image Processing 5(5), 472–480 (2011)
Gronkowska-Serafin, J., Piórkowski, A.: Corneal endothelial grid structure factor based on coefficient of variation of the cell sides lengths. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. AISC, vol. 233, pp. 13–20. Springer, Heidelberg (2014)
Habrat, K.: Binarization of corneal endothelial digital images. Master’s thesis, AGH University of Science and Technology (2012)
Khan, M.A.U., Niazi, M.K.K., Khan, M.A., Ibrahim, M.T.: Endothelial cell image enhancement using non-subsampled image pyramid. Information Technology Journal 6(7), 1057–1062 (2007)
Korkosz, M., Bielecka, M., Bielecki, A., Skomorowski, M., Wojciechowski, W., Wójtowicz, T.: Improved fuzzy entropy algorithm for x-ray pictures preprocessing. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 268–275. Springer, Heidelberg (2012)
Mahzoun, M., Okazaki, K., Mitsumoto, H., Kawai, H., Sato, Y., Tamura, S., Kani, K.: Detection and complement of hexagonal borders in corneal endothelial cell image. Medical Imaging Technology 14(1), 56–69 (1996)
Nadachi, R., Nunokawa, K.: Automated corneal endothelial cell analysis. In: Proceedings of Fifth Annual IEEE Symposium on Computer-Based Medical Systems, pp. 450–457. IEEE (1992)
Ogiela, M., Tadeusiewicz, R.: Artificial intelligence methods in shape feature analysis of selected organs in medical images. Image Processing and Communications 6, 3–11 (2000)
Pavlidis, T.: Algorithms for graphics and image processing. Computer science press (1982)
Piorkowski, A., Gronkowska-Serafin, J.: Analysis of corneal endothelial image using classic image processing methods. In: KOWBAN - XVIII The Computer-Aided Scientific Research. The Works of Wroclaw Scientific Society, B, vol. 217, pp. 283–290. Wroclawskie Towarzystwo Naukowe (2011)
Piorkowski, A., Gronkowska-Serafin, J.: Selected issues of corneal endothelial image segmentation. Journal of Medical Informatics & Technologies 17, 239–245 (2011)
Piórkowski, A., Gronkowska–Serafin, J.: Towards automated cell segmentation in corneal endothelium images. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 6. AISC, vol. 313, pp. 181–189. Springer, Heidelberg (2015)
Piórkowski, A., Mazurek, P., Gronkowska–Serafin, J.: Comparison of assessment regularity methods dedicated to isotropic cells structures analysis. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 6. AISC, vol. 313, pp. 171–180. Springer, Heidelberg (2015)
Placzek, B.: Rough sets in identification of cellular automata for medical image processing. Journal of Medical Informatics & Technologies 22, 161–168 (2013)
Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics 8(8), 630–632 (1978)
Saeed, K., Tabędzki, M., Rybnik, M., Adamski, M.: K3M: A universal algorithm for image skeletonization and a review of thinning techniques. International Journal of Applied Mathematics and Computer Science 20(2), 317–335 (2010)
Sanchez-Marin, F.J.: Automatic segmentation of contours of corneal cells. Computers in Biology and Medicine 29(4), 243–258 (1999)
Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognition 33(2), 225–236 (2000)
Serra, J., Mlynarczuk, M.: Morphological merging of multidimensional data. In: Proceedings of STERMAT 2000, pp. 385–390 (2000)
Szostek, K., Gronkowska-Serafin, J., Piorkowski, A.: Problems of corneal endothelial image binarization. Schedae Informaticae 20, 211–218 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Piórkowski, A., Gronkowska–Serafin, J. (2015). Towards Precise Segmentation of Corneal Endothelial Cells. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-16483-0_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16482-3
Online ISBN: 978-3-319-16483-0
eBook Packages: Computer ScienceComputer Science (R0)