A Computational Comparison of Different Algorithms for Very Large $$p$$ -median Problems | SpringerLink
Skip to main content

A Computational Comparison of Different Algorithms for Very Large \(p\)-median Problems

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9026))

Abstract

In this paper, we propose a new method for solving large scale \(p\)-median problem instances based on real data. We compare different approaches in terms of runtime, memory footprint and quality of solutions obtained. In order to test the different methods on real data, we introduce a new benchmark for the \(p\)-median problem based on real Swedish data. Because of the size of the problem addressed, up to 1938 candidate nodes, a number of algorithms, both exact and heuristic, are considered. We also propose an improved hybrid version of a genetic algorithm called impGA. Experiments show that impGA behaves as well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We thank C. Cleraux for providing us the code.

References

  1. Al-Khedhairi, A.: Simulated annealing metaheuristic for solving \(p\)-median problem. Int. J. Contemp. Math. Sci. 3(25–28), 1357–1365 (2008)

    MATH  MathSciNet  Google Scholar 

  2. Alp, O., Erkut, E., Drezner, Z.: An efficient genetic algorithm for the p-median problem. Ann. Oper. Res. 122(1–4), 21–42 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ashayeri, J., Heuts, R., Tammel, B.: A modified simple heuristic for the p-median problem, with facilities design applications. Robot. Comput. Integr. Manufact. 21(4–5), 451–464 (2005)

    Article  Google Scholar 

  4. Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large scale p-median problem. Comput. Oper. Res. 39(7), 1625–1632 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Avella, P., Sassano, A., Vasil’ev, I.: Computational study of large-scale p-median problems. Math. Program. 109(1), 89–114 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method. Math. Program. 87(3), 385–399 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  8. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Parallèles, Réseaux et Systèmes Répartis 10, 141–171 (1998)

    Google Scholar 

  9. Carling, K., Han, M., Håkansson, J.: Does Euclidean distance work well when the p-median model is applied in rural areas? Ann. Oper. Res. 201(1), 83–97 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cleraux, C., Bourges, P.: Relaxation Lagrangienne et le problème du p-médian. Master’s thesis, Institut Supérieur d’informatique, de modélisation et de leurs applications, Campus de Clermont-Ferrand/Les Cézeaux, BP 10125, 63173 Aubière CEDEX, France (2009)

    Google Scholar 

  11. Correa, E., Steiner, M., Freitas, A.A., Carieri, C.: A genetic algorithm for the P-median problem. In: Proceedings of 2001 Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 1268–1275 (2001)

    Google Scholar 

  12. Corrêa, R., Ferreira, A., Rebreyend, P.: Scheduling multiprocessor tasks with genetic algorithms. IEEE Trans. Parallel Distrib. Syst. 10(8), 825–837 (1999)

    Article  Google Scholar 

  13. CPlex online reference manual

    Google Scholar 

  14. Gay, J.: Résolution du Problème du p-médian, Application à la Restructuration de Bases de Données Semi-Structurées. Ph.D. thesis, Université Blaise-Pascal, Clermont-II (2011)

    Google Scholar 

  15. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)

    Article  MATH  Google Scholar 

  16. Kariv, O., Hakimi, L.: An algorithmic approach to network location problems. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lim, G.J., Ma, L.: Gpu-based parallel vertex substitution algorithm for the p-median problem. Comput. Ind. Eng. 64(1), 381–388 (2013)

    Article  Google Scholar 

  18. Lim, G.J., Reese, J., Holder, A.: Fast and robust techniques for the Euclidean p-median problem with uniform weights. Comput. Ind. Eng. 57(3), 896–905 (2009)

    Article  Google Scholar 

  19. Meng, X., Rebreyend, P.: From the road network database to a graph for localization purposes. Technical report 2014:09, Dalarna University, Statistics (2014)

    Google Scholar 

  20. Mladenoviç, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The p-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)

    Article  MATH  Google Scholar 

  21. Rebreyend, P., Han, M., Håkansson, J.: How do different algorithms work when applied on the different road networks when optimal location of facilities is searched for in rural areas? In: Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE Workshops 2013. LNCS, vol. 8182, pp. 284–291. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Reese, J.: Solution methods for the p-median problem: an annotated bibliography. Networks 48(3), 125–142 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. ReVelle, C.S., Swain, R.W.: Central facilities location. Geogr. Anal. 2(1), 30–42 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Rebreyend .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rebreyend, P., Lemarchand, L., Euler, R. (2015). A Computational Comparison of Different Algorithms for Very Large \(p\)-median Problems. In: Ochoa, G., Chicano, F. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2015. Lecture Notes in Computer Science(), vol 9026. Springer, Cham. https://doi.org/10.1007/978-3-319-16468-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16468-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16467-0

  • Online ISBN: 978-3-319-16468-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics