Abstract
Mixing Network Extremal Optimization is a new algorithm designed to identify the community structure in networks by using a game theoretic approach and a network mixing mechanism as a diversity preserving method. Numerical experiments performed on synthetic and real networks illustrate the potential of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Generated with the code available at http://sites.google.com/site/andrealancichinetti/files, downloaded on March 2014.
- 2.
For the algorithms we use the code and parameter setting available at https://sites.google.com/site/andrealancichinetti/software, downloaded on March 2014.
References
Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. U.S.A 101(9), 2658–2663 (2004)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
Nascimento, M.C., Pitsoulis, L.: Community detection by modularity maximization using GRASP with path relinking. Comput. Oper. Res. 40(12), 3121–3131 (2013)
Shang, R., Bai, J., Jiao, L., Jin, C.: Community detection based on modularity and an improved genetic algorithm. Phys. A: Stat. Mech. Appl. 392(5), 1215–1231 (2013)
Honghao, C., Zuren, F., Zhigang, R.: Community detection using ant colony optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 3072–3078 (2013)
Shi, C., Yan, Z., Cai, Y., Wu, B.: Multi-objective community detection in complex networks. Appl. Soft Comput. 12(2), 850–859 (2012)
Li, Z., Zhang, S., Wang, R.S., Zhang, X.S., Chen, L.: Quantitative function for community detection. Phys. Rev. E 77, 036109 (2008)
Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in networks. Phys. Rev. E 84, 056101 (2011)
Jiang, J.Q., McQuay, L.J.: Modularity functions maximization with nonnegative relaxation facilitates community detection in networks. Phys. A: Stat. Mech. Appl. 391(3), 854–865 (2012)
Gong, M., Ma, L., Zhang, Q., Jiao, L.: Community detection in networks by using multiobjective evolutionary algorithm with decomposition. Phys. A: Stat. Mech. Appl. 391(15), 4050–4060 (2012)
Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans. Evol. Comput. 18(99), 82–97 (2013)
Angelini, L., Boccaletti, S., Marinazzo, D., Pellicoro, M., Stramaglia, S.: Identification of network modules by optimization of ratio association. Chaos: An Interdisc. J. Nonlinear Sci. 17(2), 023114 (2007)
Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)
Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)
Amiri, B., Hossain, L., Crawford, J.W., Wigand, R.T.: Community detection in complex networks: multi-objective enhanced firefly algorithm. Knowl.-Based Syst. 46, 1–11 (2013)
Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)
Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84, 066122 (2011)
Chira, C., Gog, A., Iclanzan, D.: Evolutionary detection of community structures in complex networks: A new fitness function. In: IEEE Congress on Evolutionary Computation (CEC), 2012, pp. 1–8. IEEE (2012)
Lung, R.I., Chira, C., Andreica, A.: Game theory and extremal optimization for community detection in complex dynamic networks. PLOS ONE 9(2), e86891 (2014)
Lung, R.I., Dumitrescu, D.: Computing nash equilibria by means of evolutionary computation. Int. J. Comput. Commun. Control III(suppl.issue), 364–368 (2008)
Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash equilibria detection for multi-player games. In: IEEE Congress on Evolutionary Computation, 1–5 (2010)
Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash extremal optimization and large cournot games. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) NICSO 2011. SCI, vol. 387, pp. 195–203. Springer, Heidelberg (2011)
Boettcher, S., Percus, A.G.: Optimization with extremal dynamics. Phys. Rev. Lett. 86, 5211–5214 (2001)
Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Sci. 296, 910–913 (2002)
Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 016118 (2009)
Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PloS one 6(4), e18961 (2011)
Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)
Sales-Pardo, M., Guimer, R., Moreira, A., Nunes Amaral, L.: Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. U.S.A. 104(39), 15224–15229 (2007)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)
Acknowledgment
This work was supported by the project “OPEN-RES (PN-II-PC-CA-2011-3.1-0682 212/2.07.2012).”
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Suciu, M., Lung, R.I., Gaskó, N. (2015). Mixing Network Extremal Optimization for Community Structure Detection. In: Ochoa, G., Chicano, F. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2015. Lecture Notes in Computer Science(), vol 9026. Springer, Cham. https://doi.org/10.1007/978-3-319-16468-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-16468-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16467-0
Online ISBN: 978-3-319-16468-7
eBook Packages: Computer ScienceComputer Science (R0)