Abstract
An open issue in multiple view geometry and structure from motion, applied to real life scenarios, is the sparsity of the matched key-points and of the reconstructed point cloud. We present an approach that can significantly improve the density of measured displacement vectors in a sparse matching or tracking setting, exploiting the partial information of the motion field provided by linear oriented image patches (edgels). Our approach assumes that the epipolar geometry of an image pair already has been computed, either in an earlier feature-based matching step, or by a robustified differential tracker. We exploit key-points of a lower order, edgels, which cannot provide a unique 2D matching, but can be employed if a constraint on the motion is already given. We present a method to extract edgels, which can be effectively tracked given a known camera motion scenario, and show how a constrained version of the Lucas-Kanade tracking procedure can efficiently exploit epipolar geometry to reduce the classical KLT optimization to a 1D search problem. The potential of the proposed methods is shown by experiments performed on real driving sequences.
Chapter PDF
Similar content being viewed by others
References
Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)
Baker, S., Matthews, I.: Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision 56(3), 221–255 (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Birchfield, S.T., Pundlik, S.J.: Joint tracking of features and edges. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2008) (2008)
Bouguet, J.Y.: Pyramidal implementation of the affine Lucas Kanade feature tracker: description of the algorithm. Intel Corporation, Tech. rep. (2001)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Farnebäck, G.: Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003)
Fusiello, A., Trucco, E.: Improving feature tracking with robust statistics. Pattern Analysis & Applications pp. 312–320 (1999)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2012) (2012)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 23.1–23.6 (1988)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2004)
Hedborg, J., Forssén, P.-E., Felsberg, M.: Fast and Accurate Structure and Motion Estimation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 211–222. Springer, Heidelberg (2009)
Horn, B., Schunck, B.: Determining optical flow. In: SPIE 0281, Techniques and Applications of Image Understanding, vol. 319 (1981)
Jonsson, E., Felsberg, M.: Efficient robust mean value computation of 1D features. In: Proceedings of Svenska Sällskapet för Automatiserad Bildanalys. SSBA-2005 (2005)
Kitt, B., Lategahn, H.: Trinocular optical flow estimation for intelligent vehicle applications. In: International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 300–306. IEEE, September 2012
Lee, T., Soatto, S.: Fast planar object detection and tracking via edgel templates. In: IEEE Workshop on the Applications of Computer Vision (WACV), pp. 473–480. IEEE, January 2012
Leutenegger, S.: BRISK: Binary robust invariant scalable keypoints. IEEE Int. Conf. on Computer Vision (ICCV) 2011, 2548–2555 (2011)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intellicence (IJCAI) (1981)
Persson, M.: Online Monocular SLAM. Master’s thesis, Computer Vision Laboratory, Linköping University, Sweden (December 2013)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE Int. Conf. on Computer Vision (ICCV), pp. 2564–2571 (2011)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Conf. on Computer Vision and Pattern Recognition CVPR 1994, pp. 593–600 (1994)
Tommasini, T., Fusiello, A.: Making good features track better. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 178–183 (1998)
Trajković, M., Hedley, M.: Fast corner detection. Image and Vision Computing 16(1998), 75–87 (1998)
Trummer, M., Denzler, J., Munkelt, C.: KLT tracking using intrinsic and extrinsic camera parameters in consideration of uncertainty. International Conference on Computer Vision Theory and Applications (VISAPP) (2008)
Yamaguchi, K., McAllester, D., Urtasun, R.: Robust monocular epipolar flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1862–1869. IEEE, June 2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Piccini, T., Persson, M., Nordberg, K., Felsberg, M., Mester, R. (2015). Good Edgels to Track: Beating the Aperture Problem with Epipolar Geometry. In: Agapito, L., Bronstein, M., Rother, C. (eds) Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science(), vol 8926. Springer, Cham. https://doi.org/10.1007/978-3-319-16181-5_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-16181-5_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16180-8
Online ISBN: 978-3-319-16181-5
eBook Packages: Computer ScienceComputer Science (R0)