Abstract
A simple model of noise with an adjustable level of asynchrony is presented. The model is used to generate synthetic noise traces in the presence of a representative bulk synchronous, nearest neighbor time stepping algorithm. The resulting performance of the algorithm is measured and compared to the performance of the algorithm in the presence of Gaussian distributed noise. The results empirically illustrate that asynchrony is a dominant mechanism by which many types of computational noise degrade the performance of bulk-synchronous algorithms, whether or not their macroscopic noise distributions are constant or random.
The rights of this work are transferred to the extent transferable according to title 17 §105 U.S.C.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Garg, R., Vishnoi, N.K.: The impact of noise on the scaling of collectives: a theoretical approach. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 280–289. Springer, Heidelberg (2005)
Beckman, P., Iskra, K., Yoshii, K., Coghlan, S.: The influence of operating systems on the performance of collective operations at extreme scale. In: 2006 IEEE International Conference on Cluster Computing, pp. 1–12 (2006)
Brown, D.L., Messina, P., Beckman, P., Keyes, D., Vetter, J., Anitescu, M., Bell, J., Brightwell, R., Chamberlain, B., Estep, D., Geist, A., Hendrickson, B., Heroux, M., Lusk, R., Morrison, J., Pinar, A., Shalf, J., Shephard, M.: Cross cutting technologies for computing at the exascale. Technical report, U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, June 2010
Garg, R., De, P.: Impact of Noise on scaling of collectives: an empirical evaluation. In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 460–471. Springer, Heidelberg (2006)
Hammouda, A., Siegel, A., Siegel, S.: Noise-tolerant explicit stencil computations for nonuniform process execution rates. ACM Trans. Parallel Comput. (2014, Accepted)
Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of system noise on large-scale applications by simulation. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington, DC, USA (2010). http://dx.doi.org/10.1109/SC.2010.12
Lipman, J., Stout, Q.F.: Analysis of delays caused by local synchronization. SIAM J. Comput. 39(8), 3860–3884 (2010). http://dx.doi.org/10.1137/080723090
Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer performance: Achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, SC 2003, pp. 55. ACM, New York, NY, USA (2003). http://doi.acm.org/10.1145/1048935.1050204
Siegel, A., Siegel, S., Hammouda, A.: Sythetic noise utilities (2014). https://bitbucket.org/adamhammouda3/iutils
Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Belak, J., Bose, P., Cappello, F., Carlson, B., Chien, A.A., Coteus, P., Debardeleben, N.A., Diniz, P., Engelmann, C., Erez, M., Fazzari, S., Geist, A., Gupta, R., Johnson, F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra, S., Munson, T.S., Schreiber, R., Stearley, J., Hensbergen, E.V.: Addressing failures in exascale computing\(^{*}\). Int. J. High Perform. Comput. (2013)
Tsafrir, D., Etsion, Y., Feitelson, D.G., Kirkpatrick, S.: System noise, OS clock ticks, and fine-grained parallel applications. In: Proceedings of the 19th annual international conference on Supercomputing, ICS 2005, pp. 303–312. ACM, New York, NY, USA (2005). http://doi.acm.org/10.1145/1088149.1088190
Vishnoi, N.K.: The impact of noise on the scaling of collectives: the nearest neighbor model [extended abstract]. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873, pp. 476–487. Springer, Heidelberg (2007)
Acknowledgements
This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.
This research used the University of Delaware’s Chimera computer, funded by U.S. National Science Foundation award CNS-0958512. S.F. Siegel was supported by NSF award CCF-0953210.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland 2015 (outside the US)
About this paper
Cite this paper
Hammouda, A., Siegel, A., Siegel, S. (2015). Overcoming Asynchrony: An Analysis of the Effects of Asynchronous Noise on Nearest Neighbor Synchronizations. In: Markidis, S., Laure, E. (eds) Solving Software Challenges for Exascale. EASC 2014. Lecture Notes in Computer Science(), vol 8759. Springer, Cham. https://doi.org/10.1007/978-3-319-15976-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-15976-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15975-1
Online ISBN: 978-3-319-15976-8
eBook Packages: Computer ScienceComputer Science (R0)