Abstract
The paper proposes a method to use spatial information to interval type-2 fuzzy c-Means clustering (IT2-FCM) for problems of land cover classification from multi-spectral sattelite images. The spatial information between a pixel and its neighbors on individual band is used to calculate an interval of membership grades in IT2-FCM algorithm. The proposed algorithm, called IIT2-FCM, is implemented on Landsat7 images in comparison with previous algorithms like k-Means, FCM, IT2-FCM to demonstrate the advantage of the approach in handling uncertainty or noise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. on Fuzzy Systems 10(2), 117–127 (2002)
Ngo, L.T., Nguyen, D.D.: Land cover classification using interval type-2 fuzzy clustering for multi-spectral satellite imagery. In: IEEE-SMC, pp. 2371–2376 (2012)
Nguyen, D.D., Ngo, L.T.: Multiple kernel interval type-2 fuzzy c-means clustering. In: IEEE Int’ Conference on Fuzzy Systems, pp. 1–8 (2013)
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The Fuzzy C-Means clustering algorithm. Computers and Geosciences 10(2), 191–203 (1984)
Hwang, C., Rhee, F.C.H.: Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to C-Means. IEEE Trans. on Fuzzy Systems 15(1), 107–120 (2007)
Genitha, C.H., Vani, K.: Classification of satellite images using new fuzzy cluster centroid for unsupervised classification algorithm. In: 2013 IEEE Conf’ on ICT, pp. 203–207 (2013)
Wang, W., Zhang, Y.: On fuzzy cluster validity indices. Fuzzy Sets and Systems 158, 2095–2117 (2007)
Bezdek, J., Pal, N.: Some new indexes of cluster validity. IEEE Transactions on Systems, Man and Cybernetics 28(3), 301315 (1998)
Zhao, F., Fan, J., Liu, H.: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Systems with Applications 41, 4083–4093 (2014)
Liua, H., Zhao, F., Jiao, L.: Fuzzy spectral clustering with robust spatial information for image segmentation. Applied Soft Computing 12, 3636–3647 (2012)
Wang, Z., Song, Q., Soh, Y.C., Sim, K.: An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation. Computer Vision and Image Understanding 117, 1412–1420 (2013)
Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 30, 9–15 (2006)
Ngo, L.T., Pham, B.H.: Approach to image segmentation based on interval type-2 fuzzy subtractive clustering. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part II. LNCS, vol. 7197, pp. 1–10. Springer, Heidelberg (2012)
Sowmya, B., Sheelarani, B.: Land cover classification using reformed fuzzy C-means. Journal of Sadhana 36(2), 153–165 (2011). Springer
Su, W., Zhang, C., Zhu, X., Li, D.: A Hierarchical Object Oriented Method for Land Cover Classification of SPOT 5 Imagery. WSEAS Trans. on Information Science and Applications 6(3), 437–446 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mai, S.D., Ngo, L.T. (2015). Interval Type-2 Fuzzy C-Means Clustering with Spatial Information for Land-Cover Classification. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9011. Springer, Cham. https://doi.org/10.1007/978-3-319-15702-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-15702-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15701-6
Online ISBN: 978-3-319-15702-3
eBook Packages: Computer ScienceComputer Science (R0)