Abstract
It was shown before that the NP-hard problem of deterministic finite automata (DFA) identification can be translated to Boolean satisfiability (SAT). Modern SAT-solvers can efficiently tackle hard DFA identification instances. We present a technique to reduce SAT search space by enforcing an enumeration of DFA states in breadth-first search (BFS) order. We propose symmetry breaking predicates, which can be added to Boolean formulae representing various DFA identification problems. We show how to apply this technique to DFA identification from both noiseless and noisy data. The main advantage of the proposed approach is that it allows to exactly determine the existence or non-existence of a solution of the noisy DFA identification problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (2006)
De La Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognition 38(9), 1332–1348 (2005)
Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)
Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. Journal of the ACM 40(1), 95–142 (1993)
Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–112. Springer, Heidelberg (1998)
Lang, K.J.: Faster Algorithms for Finding Minimal Consistent DFAs. Technical report (1999)
Bugalho, M., Oliveira, A.L.: Inference of regular languages using state merging algorithms with search. Pattern Recognition 38(9), 1457–1467 (2005)
Dupont, P.: Regular grammatical inference from positive and negative samples by genetic search: the GIG method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 236–2445. Springer, Heidelberg (1994)
Luke, S., Hamahashi, S., Kitano, H.: Genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1098–1105 (1999)
Lucas, S.M., Reynolds, T.J.: Learning DFA: evolution versus evidence driven state merging. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 1, pp. 351–358. IEEE (2003)
Lucas, S.: GECCO 2004 noisy DFA results. In: GECCO Proc. (2004)
Lucas, S.M., Reynolds, T.J.: Learning deterministic finite automata with a smart state labeling evolutionary algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1063–1074 (2005)
Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 66–79. Springer, Heidelberg (2010)
Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Empirical Software Engineering 18(4), 791–824 (2013)
Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185. IOS Press (2009)
Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analysis of SAT-based model checking techniques in an industrial environment. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 254–268. Springer, Heidelberg (2005)
Lohfert, R., Lu, J.J., Zhao, D.: Solving SQL constraints by incremental translation to SAT. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 669–676. Springer, Heidelberg (2008)
Galeotti, J.P., Rosner, N., Lopez Pombo, C.G., Frias, M.F.: TACO: Efficient SAT-Based Bounded Verification Using Symmetry Breaking and Tight Bounds. IEEE Transactions on Software Engineering 39(9), 1283–1307 (2013)
Ulyantsev, V., Tsarev, F.: Extended finite-state machine induction using SAT-solver. In: Proc. of ICMLA 2011, vol. 2, pp. 346–349. IEEE (2011)
Lambeau, B., Damas, C., Dupont, P.E.: State-merging DFA induction algorithms with mandatory merge constraints. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 139–153. Springer, Heidelberg (2008)
Chambers, L.D.: Practical handbook of genetic algorithms: complex coding systems, vol. 3. CRC Press (2010)
Barahona, P., Hölldobler, S., Nguyen, V.: Efficient SAT-encoding of linear csp constraints. In: 13th International Symposium on Artificial Intelligence and Mathematics-ISAIM, Fort Lauderdale, Florida, USA (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ulyantsev, V., Zakirzyanov, I., Shalyto, A. (2015). BFS-Based Symmetry Breaking Predicates for DFA Identification. In: Dediu, AH., Formenti, E., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2015. Lecture Notes in Computer Science(), vol 8977. Springer, Cham. https://doi.org/10.1007/978-3-319-15579-1_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-15579-1_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15578-4
Online ISBN: 978-3-319-15579-1
eBook Packages: Computer ScienceComputer Science (R0)