Bayesian Methods for Intelligent Task Assignment in Crowdsourcing Systems | SpringerLink
Skip to main content

Bayesian Methods for Intelligent Task Assignment in Crowdsourcing Systems

  • Chapter
  • First Online:
Decision Making: Uncertainty, Imperfection, Deliberation and Scalability

Part of the book series: Studies in Computational Intelligence ((SCI,volume 538))

Abstract

In many decision-making scenarios, it is necessary to aggregate information from a number of different agents, be they people, sensors or computer systems. Each agent may have complementary analysis skills or access to different information, and their reliability may vary greatly. An example is using crowdsourcing to employ multiple human workers to perform analytical tasks. This chapter presents an information-theoretic approach to selecting informative decision-making agents, assigning them to specific tasks and combining their responses using a Bayesian method. For settings in which the agents are paid to undertake tasks, we introduce an automated algorithm for selecting a cohort of agents (workers) to complete informative tasks, hiring new members of the cohort and identifying those members whose services are no longer needed. We demonstrate empirically how our intelligent task assignment approach improves the accuracy of combined decisions while requiring fewer responses from the crowd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://www.mturk.com.

  2. 2.

    The Text REtrieval Conference, or TREC, consists of several competitions. For the crowdsourcing challenge, see https://sites.google.com/site/treccrowd/.

References

  1. Bashir, M., Anderton, J., Wu, J., Ekstrand-Abueg, M., Golbus, P.B., Pavlu, V., Aslam, J.A.: Northeastern university runs at the TREC12 crowdsourcing track. In: The Twenty-First Text REtrieval Conference (TREC 2012). NIST (2012)

    Google Scholar 

  2. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Series in Statistics. Springer, New York (1985)

    Google Scholar 

  3. Bishop, C.M.: Pattern recognition and machine learning. Information Science and Statistics, 4th edn. Springer, Heidelberg (2006)

    Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Bloodgood, M., Callison-Burch, C.: Using mechanical turk to build machine translation evaluation sets. In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazons Mechanical Turk, pp. 208–211. Association for Computational Linguistics (2010)

    Google Scholar 

  6. Chen, X., Bennett, P.N., Collins-Thompson, K., Horvitz, E.: Pairwise ranking aggregation in a crowdsourced setting. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 193–202. ACM (2013)

    Google Scholar 

  7. Dasgupta, S.: Analysis of a greedy active learning strategy. In: Advances in Neural Information Processing Systems, vol. 17, pp. 337–344. MIT Press, Cambridge (2004)

    Google Scholar 

  8. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 20–28 (1979)

    Google Scholar 

  9. Donmez, P., Carbonell, J., Schneider, J.: A probabilistic framework to learn from multiple annotators with time-varying accuracy. In: SIAM International Conference on Data Mining (SDM), pp. 826–837. Society for Industrial and Applied Mathematics (2010)

    Google Scholar 

  10. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  11. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–6(6), 721–741 (1984)

    Article  Google Scholar 

  12. Harris, C., Srinivasan, P.: Using hybrid methods for relevance assessment in TREC Crowd ’12. In: The Twenty-First Text REtrieval Conference (TREC 2012). NIST (2012)

    Google Scholar 

  13. Hu, Q., Xu, Z., Huang, X., Ye, Z.: York university at TREC 2012: crowdsourcing track. In: The Twenty-First Text REtrieval Conference (TREC 2012). NIST (2012)

    Google Scholar 

  14. Ipeirotis, P.G., Provost, F., Wang, J.: Quality management on Amazon mechanical turk. In: Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 64–67. ACM (2010)

    Google Scholar 

  15. Kamar, E., Hacker, S., Horvitz, E.: Combining human and machine intelligence in large-scale crowdsourcing. In: Proceedings of the 11th International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS’12, pp. 467–474. International Foundation for Autonomous Agents and Multi-Agent Systems (2012)

    Google Scholar 

  16. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  17. Levenberg, A., Pulman, S., Moilanen, K., Simpson, E., Roberts, S.: Economic indicators from web text using sentiment composition. Int. J. Comput. Commun. Eng. (2014)

    Google Scholar 

  18. Liu, Q., Peng, J., Ihler, A.: Variational inference for crowdsourcing. In: Advances in Neural Information Processing Systems, vol. 25, pp. 701–709. MIT Press, Cambridge (2012)

    Google Scholar 

  19. Nellapati, R., Peerreddy, S., Singhal, P.: Skierarchy: extending the power of crowdsourcing using a hierarchy of domain experts, crowd and machine learning. In: The Twenty-First Text REtrieval Conference (TREC 2012). NIST (2012)

    Google Scholar 

  20. Quinn, A.J., Bederson, B.B., Yeh, T., Lin, J.: Crowdflow: integrating machine learning with mechanical turk for speed-cost-quality flexibility. Technical Report HCIL-2010-09, University of Maryland, College Park (2010)

    Google Scholar 

  21. Raykar, V.C., Yu, S.: Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J. Mach. Learn. Res. 13, 491–518 (2012)

    MATH  MathSciNet  Google Scholar 

  22. Simpson, E., Roberts, S., Psorakis, I., Smith, A.: Dynamic Bayesian combination of multiple imperfect classifiers. In: Decision Making and Imperfection, pp. 1–35. Springer, Heidelberg (2013)

    Google Scholar 

  23. Simpson, E., Reece, S., Penta, A., Ramchurn, G., Roberts, S.: Using a Bayesian model to combine LDA features with crowdsourced responses. In: The Twenty-First Text REtrieval Conference (TREC 2012), Crowdsourcing Track. NIST (2013)

    Google Scholar 

  24. Smith, A.M., Lynn, S., Sullivan, M., Lintott, C.J., Nugent, P.E., Botyanszki, J., Kasliwal, M., Quimby, R., Bamford, S.P., Fortson, L.F., Schawinski, K., Hook, I., Blake, S., Podsadlowski, P., Jonsson, J.J., Gal-Yam, A., Arcavi, I., Howell, D.A., Bloom, J.S., Jacobsen, J., Kulkarni, S.R., Law, N.M., Ofek, E.O., Walters, R. Galaxy Zoo supernovae. Monthly Notices R. Astron. Soc. (2010)

    Google Scholar 

  25. Smith, A., Lintott, C.: Web-scale citizen science: from Galaxy Zoo to the Zooniverse. In: Proceedings of the Royal Society Discussion Meeting ‘Web Science: A New Frontier’. The Royal Society (2010)

    Google Scholar 

  26. Smucker, M.D., Kazai, G., Lease, M.: Overview of the TREC 2012 crowdsourcing track. In: The Twenty-First Text REtrieval Conference (TREC 2012). NIST (2012)

    Google Scholar 

  27. Smucker, M.D., Kazai, G., Lease, M.: TREC 2012 crowdsourcing track TRAT task results. In: The Twenty-First Text REtrieval Conference (TREC 2012). NIST (2012)

    Google Scholar 

  28. Yan, Y., Fung, G.M., Rosales, R., Dy, J.G.: Active learning from crowds. In: Proceedings of the 28th International Conference on Machine Learning, ICML’11, pp. 1161–1168 (2011)

    Google Scholar 

  29. Zhang, C., Zeng, M., Sang, X., Zhang, K., Kang, H.: BUPT\_PRIS at TREC 2012 crowdsourcing track 1. In: The Twenty-First Text REtrieval Conference (TREC 2012). NIST (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simpson, E., Roberts, S. (2015). Bayesian Methods for Intelligent Task Assignment in Crowdsourcing Systems. In: Guy, T., Kárný, M., Wolpert, D. (eds) Decision Making: Uncertainty, Imperfection, Deliberation and Scalability. Studies in Computational Intelligence, vol 538. Springer, Cham. https://doi.org/10.1007/978-3-319-15144-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15144-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15143-4

  • Online ISBN: 978-3-319-15144-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics