Abstract
An accurate estimation of myocardial stiffness and decaying active tension is critical for the characterization of the diastolic function of the heart. Computational cardiac models can be used to analyse deformation and pressure data from the left ventricle in order to estimate these diastolic metrics. The results of this methodology depend on several model assumptions. In this work we reveal a nominal impact of the choice of myocardial fibre orientation between a rule-based description and personalised approach based on diffusion-tensor magnetic resonance imaging. This result suggests the viability of simplified clinical imaging protocols for the model-based estimation of diastolic biomarkers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carapella, V., Bordas, R., Pathmanathan, P., Lohezic, M., Schneider, J.E., Kohl, P., Burrage, K., Grau, V.: Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle. PLoS ONE 9(4), e92792 (2014)
Geerts, L., Kerckhoffs, R., Bovendeerd, P., Arts, T.: Towards patient specific models of cardiac mechanics: a sensitivity study. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.) FIMH 2003. LNCS, vol. 2674, pp. 81–90. Springer, Heidelberg (2003)
Gil, D., et al.: What a difference in biomechanics cardiac fiber makes. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 253–260. Springer, Heidelberg (2013)
Imperiale, A., Routier, A., Durrleman, S., Moireau, P.: Improving efficiency of data assimilation procedure for a biomechanical heart model by representing surfaces as currents. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 342–351. Springer, Heidelberg (2013)
Lamata, P., Niederer, S., Nordsletten, D., Barber, D., Roy, I., Hose, D., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic hermite meshes. Medical Image Analysis 15(6), 801–813 (2011)
Lamata, P., Niederer, S., Plank, G., Smith, N.: Generic conduction parameters for predicting activation waves in customised cardiac electrophysiology models. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 252–260. Springer, Heidelberg (2010)
Lamata, P., Roy, I., Blazevic, B., Crozier, A., Land, S., Niederer, S., Rod Hose, D., Smith, N.: Quality metrics for high order meshes: Analysis of the mechanical simulation of the heart beat. IEEE Transactions on Medical Imaging 32(1), 130–138 (2013)
Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., Land, S., Lewandowski, A., Barber, D., Niederer, S., Smith, N.: An automatic service for the personalization of ventricular cardiac meshes. Journal of the Royal Society Interface 11(91) (2014)
Land, S., Niederer, S., Lamata, P., Smith, N.: Improving the stability of cardiac mechanical simulations. IEEE Transactions on Biomedical Engineering (2015, in press)
Land, S., Niederer, S., Smith, N.: Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Transactions on Biomedical Engineering 59(5), 1219–1228 (2012)
Mcmurray, J., et al.: Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. European Journal of Heart Failure 14(8), 803–869 (2012)
Okamoto, R.J., Moulton, M.J., Peterson, S.J., Li, D., Pasque, M.K., Guccione, J.M.: Epicardial suction: a new approach to mechanical testing of the passive ventricular wall. J. Biomech. Eng. 122(5), 479–487 (2000)
Omens, J.H., MacKenna, D.A., McCulloch, A.D.: Measurement of strain and analysis of stress in resting rat left ventricular myocardium. Journal of Biomechanics 26(6), 665–676 (1993)
Usyk, T., Mazhari, R., McCulloch, A.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. Journal of Elasticity and the Physical Science of Solids 61(1–3), 143–164 (2000)
Wang, V.Y., Lam, H., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative mri of cardiac structure and function. Medical Image Analysis 13(5), 773–784 (2009)
Xi, J., Shi, W., Rueckert, D., Razavi, R., Smith, N., Lamata, P.: Understanding the need of ventricular pressure for the estimation of diastolic biomarkers. Biomechanics and Modeling in Mechanobiology 13(4), 747–57 (2014)
Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Medical Image Analysis 17(2), 133–146 (2013)
Zile, M., Baicu, C., Gaasch, W.: Diastolic heart failure - abnormalities in active relaxation and passive stiffness of the left ventricle. New England Journal of Medicine 350(19), 1953–1959+2018 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Land, S., Niederer, S., Lamata, P. (2015). Estimation of Diastolic Biomarkers: Sensitiviy to Fibre Orientation. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-14678-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14677-5
Online ISBN: 978-3-319-14678-2
eBook Packages: Computer ScienceComputer Science (R0)