Maximizing Flows with Message-Passing: Computing Spatially Continuous Min-Cuts | SpringerLink
Skip to main content

Maximizing Flows with Message-Passing: Computing Spatially Continuous Min-Cuts

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

In this work, we study the problems of computing spatially continuous cuts, which has many important applications of image processing and computer vision. We focus on the convex relaxed formulations and investigate the corresponding flow-maximization based dual formulations. We propose a series of novel continuous max-flow models based on evaluating different constraints of flow excess, where the classical pre-flow and pseudo-flow models over graphs are re-discovered in the continuous setting and re-interpreted in a new variational manner. We propose a new generalized proximal method, which is based on a specific entropic distance function, to compute the maximum flow. This leads to new algorithms exploring flow-maximization and message-passing simultaneously. We show the proposed algorithms are superior to state of art methods in terms of efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Transactions on PAMI 28, 106–118 (2006)

    Article  Google Scholar 

  2. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. International Journal of Computer Vision 92(1), 112–129 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. Journal of Machine Learning Research 6, 1705–1749 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on PAMI 26, 359–374 (2001)

    Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on PAMI 23, 1222 (2001)

    Article  Google Scholar 

  6. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7, 200–217 (1967)

    Article  Google Scholar 

  7. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y.A., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press (1997)

    Google Scholar 

  9. Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical Report TR-2008-05, University of Bonn (November 2008)

    Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sciences 3(4), 1015–1046 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  13. Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canad. J. Math. 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. J. Sci. Comput. 45(1-3), 272–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. Royal Stat. Soc., Series B, 271–279 (1989)

    Google Scholar 

  17. Hochbaum, D.S.: The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations Research 56(4), 992–1009 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Mathematics of Operations Research 19(4), 790–814 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kolmogorov, V., Wainwright, M.J.: On the optimality of tree-reweighted max-product message-passing. In: UAI, pp. 316–323 (2005)

    Google Scholar 

  20. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. App. Math. 66(5), 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Olsson, C., Byröd, M., Overgaard, N.C., Kahl, F.: Extending continuous cuts: Anisotropic metrics and expansion moves. In: ICCV, pp. 405–412 (2009)

    Google Scholar 

  23. Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Computer Vision. Springer-Verlag New York, Inc., Secaucus (2005)

    MATH  Google Scholar 

  24. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)

    Google Scholar 

  27. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optimization 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17(3), 670–690 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Teboulle, M.: A unified continuous optimization framework for center-based clustering methods. J. Mach. Learn. Res. 8, 65–102 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE Transactions on Information Theory 51, 3697–3717 (2002)

    Article  MathSciNet  Google Scholar 

  31. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory 51(11), 3697–3717 (2005)

    Article  MathSciNet  Google Scholar 

  32. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: CVPR, USA, San Francisco (2010)

    Google Scholar 

  33. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik 126, 559–587 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: VMV 2008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bae, E., Tai, XC., Yuan, J. (2015). Maximizing Flows with Message-Passing: Computing Spatially Continuous Min-Cuts. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics