Abstract
In the population protocol model Angluin et al. proposed in 2004, there exists no self-stabilizing protocol that solves leader election on complete graphs without knowing the exact number of nodes. To circumvent the impossibility, we previously introduced the concept of loose-stabilization, which relaxes the closure requirement of self-stabilization. A loosely-stabilizing protocol guarantees that starting from any initial configuration a system reaches a loosely-safe configuration, and after that, the system keeps its specification (e.g. the unique leader) not forever, but for a sufficiently long time. Our previous work presented a loosely-stabilizing protocol that solves the leader election on complete graphs using only the upper bound N of n, not the exact value of n. We take this work one step further in this paper: We propose two loosely-stabilizing protocols that solve leader election for arbitrary graphs. One is a deterministic protocol that uses the identifiers of nodes while the other is a probabilistic protocol that works on anonymous networks. Given the upper bounds N and Δ of the number of nodes and the maximum degree of nodes respectively, both protocols keep a unique leader for Ω(Ne N) expected steps after entering a loosely-safe configuration. The former enters a loosely-safe configuration within O(mΔN logn) expected steps while the latter does within O(mΔ2 N 3logN) expected steps where m is the number of edges of the graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)
Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006)
Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. ACM Transactions on Autonomous and Adaptive Systems 3(4), 13 (2008)
Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in population protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Heidelberg (2013)
Beauquier, J., Burman, J., Rosaz, L., Rozoy, B.: Non-deterministic population protocols. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 61–75. Springer, Heidelberg (2012)
Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model. Theory of Computing Systems 50(3), 433–445 (2012)
Canepa, D., Potop-Butucaru, M.G.: Stabilizing leader election in population protocols (2007), http://hal.inria.fr/inria-00166632
Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006)
Guerraoui, R., Ruppert, E.: Even small birds are unique: Population protocols with identifiers. Rapport de Recherche CSE-2007-04, Department of Computer Science and Engineering, York University, York, ON, Canada (2007)
Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theoretical Computer Science 412(22), 2434–2450 (2011)
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press (2005)
Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-stabilizing leader election in mediated population protocol. Distributed Computing 25(6), 451–460 (2012)
Sudo, Y., Nakamura, J., Yamauchi, Y., Ooshita, F., Kakugawa, H., Masuzawa, T.: Loosely-stabilizing leader election in a population protocol model. Theoretical Computer Science 444, 100–112 (2012)
Xu, X., Yamauchi, Y., Kijima, S., Yamashita, M.: Space complexity of self-stabilizing leader election in population protocol based on k-interaction. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 86–97. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T. (2014). Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds) Principles of Distributed Systems. OPODIS 2014. Lecture Notes in Computer Science, vol 8878. Springer, Cham. https://doi.org/10.1007/978-3-319-14472-6_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-14472-6_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14471-9
Online ISBN: 978-3-319-14472-6
eBook Packages: Computer ScienceComputer Science (R0)