Abstract
In radiation therapy, multiatlas segmentation is recognized as being accurate, but is generally not considered scalable since the highest accuracy is achieved only when using a large atlas database. The fundamental problem is to use such a large database, to accurately represent the population variability, while conserving a relatively small computational cost. A method based on the composition of transformations is proposed to address this issue. The main novelties and key contributions of this paper are the definition of a transitivity error function and the presentation of an image clustering scheme that is based solely on the computed registration transformations. Leave-one-out experiments conducted on a database of \(N=50\) MR prostate scans demonstrate that a reduction of \((N-1)=49\)x in the number of pre-alignment registrations, and of 3.2x in term of total registration effort, is possible without significant impact on segmentation quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acosta, O., Dowling, J., Drean, G., Simon, A., Crevoisier, R.D., Haigron, P.: Multi-atlas-based segmentation of pelvic structures from CT scans for planning in prostate cancer radiotherapy. In: El-Baz, A.S., Saba, L., Suri, J. (eds.) Abdomen and Thoracic Imaging, pp. 623–656. Springer, New york (2014)
Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)
Blezek, D.J., Miller, J.V.: Atlas stratification. Med. Image Anal. 11(5), 443–457 (2007)
Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans. Med. Imaging 27(4), 557–568 (2008)
Chandra, S.S., Dowling, J.A., Shen, K.K., Raniga, P., Pluim, J.P.W., Greer, P.B., Salvado, O., Fripp, J.: Patient specific prostate segmentation in 3-D magnetic resonance images. IEEE Trans. Med. Imaging 31(10), 1955–1964 (2012)
Commowick, O., Warfield, S.K., Malandain, G.: Using frankenstein’s creature paradigm to build a patient specific atlas. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 993–1000. Springer, Heidelberg (2009)
Depa, M., Holmvang, G., Schmidt, E.J., Golland, P., Sabuncu, M.R.: Towards efficient label fusion by pre-alignment of training data. In: Proceedings of the 2011 MICCAI Workshop on Multi-Atlas Labeling and Statistical Fusion, pp. 38–46 (2011)
Dowling, J., Lambert, J., Parker, J., Salvado, O., Fripp, J., Capp, A., Wratten, C., Denham, J.W., Greer, P.B.: An atlas-based electron density mapping method for magnetic resonance imaging MRI-alone Treatment Planning and Adaptive MRI-based prostate radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 83(1), e5–e11 (2012)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)
Hoang Duc, A.K., Modat, M., Leung, K.K., Cardoso, M.J., Barnes, J., Kadir, T., Ourselin, S.: Using manifold learning for atlas selection in multi-atlas segmentation. PloS One 8(8), e70059 (2013)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans. IEEE TMI 28(7), 1000–1010 (2009)
Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.W.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407 (2008)
Langerak, T.R., Berendsen, F.F., van der Heide, U.A., Kotte, A.N.T.J., Pluim, J.P.W.: Multiatlas-based segmentation with preregistration atlas selection. Med. Phys. 40(9), 091701 (2013)
Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schuff, N., Fox, N.C., Ourselin, S.: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage 51(4), 1345–1359 (2010)
Lötjönen, J.M., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3), 2352–2365 (2010)
van Rikxoort, E.M., Isgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M.A., Pluim, J.P.W., van Ginneken, B.: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Med. Image Anal. 14(1), 39–49 (2010)
Rivest-Hénault, D., Dowson, N., Greer, P., Dowling, J.: Inverse-consistent rigid registration of CT and MR for MR-based planning and adaptive prostate radiation therapy. J. Phys: Conf. Ser. 489, 012039 (2014)
Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)
Skrinjar, O., Bistoquet, A., Tagare, H.: Symmetric and transitive registration of image sequences. Int. J. Biomed. Imaging 2008, 686875 (2008)
Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: LEAP: learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)
Acknowledgments
This research was supported by the Cancer Council NSW (RG 11-05), the Prostate Cancer Foundation of Australia (YI2011), Movember and Cure Cancer Australia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Rivest-Hénault, D., Ghose, S., Pluim, J.P.W., Greer, P.B., Fripp, J., Dowling, J.A. (2014). Fast Multiatlas Selection Using Composition of Transformations for Radiation Therapy Planning. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2014. Lecture Notes in Computer Science(), vol 8848. Springer, Cham. https://doi.org/10.1007/978-3-319-13972-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-13972-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13971-5
Online ISBN: 978-3-319-13972-2
eBook Packages: Computer ScienceComputer Science (R0)