The Influence of Indirect Ties on Social Network Dynamics | SpringerLink
Skip to main content

The Influence of Indirect Ties on Social Network Dynamics

  • Chapter
Social Informatics (SocInfo 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8851))

Included in the following conference series:

  • International Conference on Social Informatics

Abstract

While direct social ties have been intensely studied in the context of computer-mediated social networks, indirect ties (e.g., friends of friends) have seen less attention. Yet in real life, we often rely on friends of our friends for recommendations (of doctors, schools, or babysitters), for introduction to a new job opportunity, and for many other occasional needs. In this work we empirically study the predictive power of indirect ties in two dynamic processes in social networks: new link formation and information diffusion. We not only verify the predictive power of indirect ties in new link formation but also show that this power is effective over longer social distance. Moreover, we show that the strength of an indirect tie positively correlates to the speed of forming a new link between the two end users of the indirect tie. Finally, we show that the strength of indirect ties can serve as a predictor for diffusion paths in social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, Z., Shen, H.: Soap: A social network aided personalized and effective spam filter to clean your e-mail box. In: Proceedings IEEE INFOCOM (2011)

    Google Scholar 

  2. Basu, C., Hirsh, H., Cohen, W.: Recommendation as classification: Using social and content-based information in recommendation. In: AAAI/IAAI, pp. 714–720 (1998)

    Google Scholar 

  3. Li, J., Dabek, F.: F2F: reliable storage in open networks. In: Proceedings of the 4th International Workshop on Peer-to-Peer Systems, IPTPS (2006)

    Google Scholar 

  4. Kahanda, I., Neville, J.: Using transactional information to predict link strength in online social networks. In: ICWSM (2009)

    Google Scholar 

  5. Gilbert, E., Karahalios, K.: Predicting tie strength with social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 211–220. ACM (2009)

    Google Scholar 

  6. Granovetter, M.S.: A study of contacts and careers. Cambridge, Mass. Harvard (1974)

    Google Scholar 

  7. McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: Homophily in social networks. Annual review of sociology, 415–444 (2001)

    Article  Google Scholar 

  8. Granovetter, M.S.: The strength of weak ties. American Journal of Sociology 78(6) (1973)

    Article  Google Scholar 

  9. Coleman, J.: Social capital in the creation of human capital. American Journal of Sociology, S95–S120 (1988)

    Article  Google Scholar 

  10. Rapoport, A.: Spread of information through a population with socio-structural bias: I. assumption of transitivity. The bulletin of mathematical biophysics 15(4), 523–533 (1953)

    Article  MathSciNet  Google Scholar 

  11. Szell, M., Thurner, S.: Measuring social dynamics in a massive multiplayer online game. Social Networks 32(4), 313–329 (2010)

    Article  Google Scholar 

  12. Kossinets, G., Watts, D.J.: Origins of homophily in an evolving social network1. American Journal of Sociology 115(2), 405–450 (2009)

    Article  Google Scholar 

  13. Kleinbaum, A.M.: Organizational misfits and the origins of brokerage in intrafirm networks. Administrative Science Quarterly 57(3), 407–452 (2012)

    Article  Google Scholar 

  14. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: memberships, growth, and evolution. In: The International Conference on Knowledge Discovery and Data Mining, KDD (2006)

    Google Scholar 

  15. Patil, A., Liu, J., Gao, J.: Predicting group stability in online social networks. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1021–1030 (2013)

    Google Scholar 

  16. Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion in twitter. In: ICWSM, vol. 10, pp. 355–358 (2010)

    Google Scholar 

  17. Blackburn, J., Iamnitchi, A.: Relationships under the microscope with interaction-backed social networks. In: 1st International Conference on Internet Science, Brussels, Belgium (2013)

    Google Scholar 

  18. Blackburn, J., Kourtellis, N., Skvoretz, J., Ripeanu, M., Iamnitchi, A.: Cheating in online games: A social network perspective. ACM Transactions on Internet Technology (TOIT) 13(3), 9 (2014)

    Article  Google Scholar 

  19. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s in a crowd? Analysis of face-to-face behavioral networks. Journal of Theoretical Biology 271(1), 166–180 (2011)

    Article  MathSciNet  Google Scholar 

  20. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: International Conference on Knowledge Discovery and Data Mining, KDD (2009)

    Google Scholar 

  21. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American society for information science and technology 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  22. Lü, L., Zhou, T.: Physica A: Statistical Mechanics and its Applications. Physica A: Statistical Mechanics and its Applications 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  23. Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: 19th International Conference on World Wide Web, Raleigh, NC, USA, pp. 981–990 (2010)

    Google Scholar 

  24. Friedkin, N.E.: Horizons of observability and limits of informal control in organizations. Social Forces 62(6), 54–77 (1983)

    Article  Google Scholar 

  25. Christakis, N.A., Fowler, J.H.: Connected: The surprising power of our social networks and how they shape our lives. Hachette Digital, Inc. (2009)

    Google Scholar 

  26. Adamic, L., Adar, E.: Friends and neighbors on the web. Social Networks 25(3), 211–230 (2003)

    Article  Google Scholar 

  27. Kourtellis, N.: On the design of socially-aware distributed systems. Ph.D. dissertation, University of South Florida (2012)

    Google Scholar 

  28. Zuo, X., Blackburn, J., Kourtellis, N., Skvoretz, J., Iamnitchi, A.: The power of indirect ties in friend-to-friend storage systems. In: 14th IEEE International Conference on Peer-to-Peer Computing (September 2014)

    Google Scholar 

  29. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. ICML 97, 179–186 (1997)

    Google Scholar 

  30. Chawla, N.V., Bowyer, K.W., Hall, H.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  31. Zignani, M., Gaito, S., Rossi, G.P., Zhao, X., Zheng, H., Zhao, B.Y.: Link and triadic closure delay: Temporal metrics for social network dynamics. In: ICWSM 2014 (2014)

    Google Scholar 

  32. Yildiz, M.E., Scaglione, A., Ozdaglar, A.: Asymmetric information diffusion via gossiping on static and dynamic networks. In: 49th IEEE Conference on Decision and Control (CDC), pp. 7467–7472 (December 2010)

    Google Scholar 

  33. Guille, A., Hacid, H.: A predictive model for the temporal dynamics of information diffusion in online social networks. In: Proceedings of the 21st International Conference Companion on World Wide Web, pp. 1145–1152 (2012)

    Google Scholar 

  34. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 519–528 (2012)

    Google Scholar 

  35. Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schifanella, R., Menczer, F., Flammini, A.: The role of information diffusion in the evolution of social networks. In: Proceedings of the 19th ACM International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 356–364 (2013)

    Google Scholar 

  36. Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: A survey. SIGMOD Rec. 42(2), 17–28 (2013)

    Article  Google Scholar 

  37. Fowler, J.H., Christakis, N.A., Roux, D.: Dynamic spread of happiness in a large social network: longitudinal analysis of the framingham heart study social network. BMJ: British Medical Journal, 23–27 (2009)

    Google Scholar 

  38. Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over 32 years. New England Journal of Medicine 357(4), 370–379 (2007)

    Article  Google Scholar 

  39. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003)

    Google Scholar 

  40. Newman, M.E.: The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences 98(2), 404–409 (2001)

    Article  MathSciNet  Google Scholar 

  41. Wei, X., Yang, J., Adamic, L.A., Araújo, R.M.d., Rekhi, M.: Diffusion dynamics of games on online social networks. In: Proceedings of the 3rd conference on Online Social Networks, p. 2. USENIX Association (2010)

    Google Scholar 

  42. Blackburn, J., Simha, R., Kourtellis, N., Zuo, X., Ripeanu, M., Skvoretz, J., Iamnitchi, A.: Branded with a scarlet “c”: cheaters in a gaming social network. In: Proceedings of the 21st International Conference on World Wide Web (2012)

    Google Scholar 

  43. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zuo, X., Blackburn, J., Kourtellis, N., Skvoretz, J., Iamnitchi, A. (2014). The Influence of Indirect Ties on Social Network Dynamics. In: Aiello, L.M., McFarland, D. (eds) Social Informatics. SocInfo 2014. Lecture Notes in Computer Science, vol 8851. Springer, Cham. https://doi.org/10.1007/978-3-319-13734-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13734-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13733-9

  • Online ISBN: 978-3-319-13734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics