A Novel Hybrid Perceptron Neural Network Algorithm for Classifying Breast MRI Tumors | SpringerLink
Skip to main content

A Novel Hybrid Perceptron Neural Network Algorithm for Classifying Breast MRI Tumors

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2014)

Abstract

Breast cancer today is the leading cause of death amongst cancer patients inflicting women around the world. Breast cancer is the most common cancer in women worldwide. It is also the principle cause of death from cancer among women globally. Early detection of this disease can greatly enhance the chances of long-term survival of breast cancer victims. Classification of cancer data helps widely in detection of the disease and it can be achieved using many techniques such as Perceptron which is an Artificial Neural Network (ANN) classification technique. In this paper, we proposed a new hybrid algorithm by combining the perceptron algorithm and the feature extraction algorithm after applying the Scale Invariant Feature Transform (SIFT) algorithm in order to classify magnetic resonance imaging (MRI) breast cancer images. The proposed algorithm is called breast MRI cancer classifier (BMRICC) and it has been tested tested on 281 MRI breast images (138 abnormal and 143 normal). The numerical results of the general performance of the BMRICC algorithm and the comparasion results between it and other 5 benchmark classifiers show that, the BMRICC algorithm is a promising algorithm and its performance is better than the other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulkareem, I.: A Review on Aetio-Pathogenesis of Breast Cancer. J. Genet. Syndr. Gene. Ther. 4, 142 (2013), doi:10.4172/2157-7412.1000142

    Google Scholar 

  2. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  3. DeLille, J.: Breast cancer: regional bloodflow and blood volume measured with magnetic susceptibility-based MR imaging - initial results. Radiology 223, 558–565 (2002)

    Article  Google Scholar 

  4. Own, H.S., Hassanien, A.E.: Rough Wavelet Hybrid Image Classification Scheme. Journal of Convergence Information Technology (JCIT) 3(4), 65–75 (2008)

    Google Scholar 

  5. Dumitru, D.: Prediction of recurrent events in breast cancer using the Naive Bayesian classification. Annals of University of Craiova, Math. Comp. Sci. Ser. 36(2), 92–96 (2009) ISSN: 1223-6934

    Google Scholar 

  6. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  7. Goscin, P.C., Berman, G.C., Clark, R.A.: Magnetic Resonance Imaging of the Breast. Cancer Control 8(5) (2001)

    Google Scholar 

  8. Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kauffman Publishers, USA (2006)

    MATH  Google Scholar 

  9. Hassanien, A.E., Moftah, H.M., Azar, A.T., Shoman, M.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. 14, 62–71 (2014)

    Article  Google Scholar 

  10. Hassanien, A.E.: Fuzzy rough sets hybrid scheme for breast cancer detection. Image Vision Comput. 25(2), 172–183 (2007)

    Article  Google Scholar 

  11. Leo, B.: Random Forests. Machine Learning 45(1), 5–32 (2001), doi:10.1023/A:1010933404324

    Article  MATH  MathSciNet  Google Scholar 

  12. Leibowitz, B.: Dawning of the age of angiogenesis. american boards of internal medicine and subspecialties of medical oncology and hematology (April 2004)

    Google Scholar 

  13. Lowe, D.: Object recognition from local scale-invariant features. In: Proceeding of the IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  14. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Moftah, H.M., Azar, A.T., Al-Shammari, E.T., Ghali, N.I., Hassanien, A.E., Shoman, M.: Adaptive k-means clustering algorithm for MR breast image segmentation. Neural Computing and Applications 24(7-8), 1917–1928 (2014)

    Article  Google Scholar 

  16. Othman, A., Tizhoosh, H.: Image Classification using Evolving Fuzzy Inference Systems. In: IEEE International Conference on Fuzzy Systems, pp. 1435–1438. IEEE (2013)

    Google Scholar 

  17. Pianykh, O.: Digital Imaging and Communications in Medicine (DICOM). A Practical Introduction and Survival Guide. Springer (2008)

    Google Scholar 

  18. Al-Faris, A.Q., Ngah, U.K., Isa, N.A.M., Shuaib, I.L.: Breast MRI Tumor Segmentation using Modified Automatic Seeded Region Growing Based on Particle Swarm Optimization Image Clustering. In: Snášel, V., Krömer, P., Köppen, M., Schaefer, G. (eds.) Soft Computing in Industrial Applications. AISC, vol. 223, pp. 49–60. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Rouhi, P.: Role Of Angiogenesi. In: Cancer Invasion And Metastasis. Karolinska Institutet (2013)

    Google Scholar 

  20. Salama, G.I., Abdelhalim, M.B., Zeid, M.A.: Breast Cancer Diagnosis on Three Different Datasets Using Multi-Classifiers. International Journal of Computer and Information Technology (2277 - 0764) 01(01) (September 2012)

    Google Scholar 

  21. Vapnik, V.N.: The Nature of Statistical Learning Theory, 1st edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  22. Vinukonda, P.: A Study of The Scale-Invariant Feature Transform on A Parallel Pipeline, B.TECH., JNTU University (May 2011)

    Google Scholar 

  23. Woollams, C.: Everything You Need To Know To Help You Beat Cancer, 4th ed., CANCERactive, a UK registered Charity (March 2013)

    Google Scholar 

  24. http://cancerimagingarchive.net/gettingaccess.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

ElNawasany, A.M., Ali, A.F., Waheed, M.E. (2014). A Novel Hybrid Perceptron Neural Network Algorithm for Classifying Breast MRI Tumors. In: Hassanien, A.E., Tolba, M.F., Taher Azar, A. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2014. Communications in Computer and Information Science, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-319-13461-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13461-1_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13460-4

  • Online ISBN: 978-3-319-13461-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics