Personalized PageRank with Node-Dependent Restart | SpringerLink
Skip to main content

Personalized PageRank with Node-Dependent Restart

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8882))

Included in the following conference series:

Abstract

Personalized PageRank is an algorithm to classify the importance of web pages on a user-dependent basis. We introduce two generalizations of Personalized PageRank with node-dependent restart. The first generalization is based on the proportion of visits to nodes before the restart, whereas the second generalization is based on the proportion of time a node is visited just before the restart. In the original case of constant restart probability, the two measures coincide. We discuss interesting particular cases of restart probabilities and restart distributions. We show that both generalizations of Personalized PageRank have an elegant expression connecting the so-called direct and reverse Personalized PageRanks that yield a symmetry property of these Personalized PageRanks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avrachenkov, K., van der Hofstad, R.W., Sokol, M.: Personalized PageRank with Node-dependent Restart, Inria Research Report no.8570 (July 2014). http://hal.inria.fr/INRIA-RRRT/hal-01052482

  2. Avrachenkov, K., Filar, J., Howlett, P.: Analytic perturbation theory and its applications. SIAM Publisher (2013)

    Google Scholar 

  3. Avrachenkov, K., Dobrynin, V., Nemirovsky, D., Pham, S., Smirnova, E.: Pagerank based clustering of hypertext document collections. In: Proceedings of ACM SIGIR 2008 (2008)

    Google Scholar 

  4. Avrachenkov, K., Gonçalves, P., Mishenin, A., Sokol, M.: Generalized optimization framework for graph-based semi-supervised learning. In: Proceedings of SIAM Conference on Data Mining (SDM 2012)

    Google Scholar 

  5. Avrachenkov, K., Gonçalves, P., Sokol, M.: On the Choice of Kernel and Labelled Data in Semi-supervised Learning Methods. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 56–67. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Avrachenkov, K., Ribeiro, B., Towsley, D.: Improving Random Walk Estimation Accuracy with Uniform Restarts. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 98–109. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Avrachenkov, K., Litvak, N., Sokol, M., Towsley, D.: Quick detection of nodes with large degrees. Internet Mathematics 10, 1–19 (2013)

    Article  Google Scholar 

  8. Baeza-Yates, R., Boldi, P., Castillo, C.: Generalizing pagerank: Damping functions for link-based ranking algorithms. In: Proceedings of ACM SIGIR 2006, pp. 308–315 (2006)

    Google Scholar 

  9. Boldi, P.: TotalRank: Ranking without damping. In: Poster Proceedings of WWW 2005, pp. 898–899 (2005)

    Google Scholar 

  10. Brin, S., Page, L., Motwami, R., Winograd, T.: The PageRank citation ranking: bringing order to the Web. Stanford University Technical Report (1998)

    Google Scholar 

  11. Castillo, C., Donato, D., Gionis, A., Murdock, V., Silvestri, F.: Know your neighbors: Web spam detection using the web topology. In: Proceedings of ACM SIGIR 2007, pp. 423–430 (July 2007)

    Google Scholar 

  12. Chen, N., Olvera-Cravioto, M.: Directed random graphs with given degree distributions. Stochastic Systems 3, 147–186 (electronic) (2013)

    Google Scholar 

  13. Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics 1(1), 8–15 (2007)

    Article  Google Scholar 

  14. Constantine, P.G., Gleich, D.F.: Using Polynomial Chaos to Compute the Influence of Multiple Random Surfers in the PageRank Model. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 82–95. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Constantine, P.G., Gleich, D.F.: Random alpha PageRank. Internet Mathematics 6(2), 189–236 (2010)

    Article  MathSciNet  Google Scholar 

  16. Fouss, F., Francoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on graphs for collaborative recommendation and semi-supervised classification. Neural Networks 31, 53–72 (2012)

    Article  MATH  Google Scholar 

  17. Haveliwala, T.: Topic-Sensitive PageRank. In: Proceedings of WWW 2002 (2002)

    Google Scholar 

  18. van der Hofstad, R.: Random Graphs and Complex Networks, Lecture notes in preparation (2014) (preprint). http://www.win.tue.nl/~rhofstad/NotesRGCN.html

  19. Liu, X., Bollen, J., Nelson, M.L., van de Sompel, H.: Co-authorship networks in the digital library research community. Information Processing & Management 41, 1462–1480 (2005)

    Article  Google Scholar 

  20. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys 2007), pp. 17–24 (2007)

    Google Scholar 

  21. Moler, C.D., Moler, K.A.: Numerical Computing with MATLAB. SIAM (2003)

    Google Scholar 

  22. Tijms, H.C.: A first course in stochastic models. John Wiley and Sons (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Avrachenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Avrachenkov, K., van der Hofstad, R., Sokol, M. (2014). Personalized PageRank with Node-Dependent Restart. In: Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2014. Lecture Notes in Computer Science(), vol 8882. Springer, Cham. https://doi.org/10.1007/978-3-319-13123-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13123-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13122-1

  • Online ISBN: 978-3-319-13123-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics