Balancing Output Length and Query Bound in Hardness Preserving Constructions of Pseudorandom Functions | SpringerLink
Skip to main content

Balancing Output Length and Query Bound in Hardness Preserving Constructions of Pseudorandom Functions

  • Conference paper
  • First Online:
Progress in Cryptology -- INDOCRYPT 2014 (INDOCRYPT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8885))

Included in the following conference series:

Abstract

We revisit hardness-preserving constructions of a pseudo-random function (PRF) from any length doubling pseudo-random generator (PRG) when there is a non-trivial upper bound \(q\) on the number of queries that the adversary can make to the PRF. Very recently, Jain, Pietrzak, and Tentes (TCC 2012) gave a hardness-preserving construction of a PRF that makes only \(O(\log q)\) calls to the underlying PRG when \(q = 2^{n^\epsilon }\) and \(\epsilon \ge \frac{1}{2}\). This dramatically improves upon the efficiency of the construction of Goldreich, Goldwasser, and Micali (FOCS 1984). However, they explicitly left open the question of whether such constructions exist when \(\epsilon < \frac{1}{2}\). In this work, we give constructions of PRFs that make only \(O(\log q)\) calls to the underlying PRG when \(q = 2^{n^\epsilon }\), for \(0<\epsilon <1\); our PRF outputs \(O(n^{2\epsilon })\) bits (on every input), as opposed to the construction of Jain et al. that outputs \(n\) bits. That is, our PRF is not length preserving; however it outputs more bits than the PRF of Jain et al. when \(\epsilon >\frac{1}{2}\). We obtain our construction through the use of information-theoretic tools such as almost \(\alpha \)-wise independent hash functions coupled with a novel proof strategy.

Work done while Nishanth Chandran was at Microsoft Research, Redmond.

Work done while Sanjam Garg was visiting Microsoft Research, Redmond. Part of this research conducted while at the IBM Research, T.J. Watson funded by NSF Grant No.1017660.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construction of almost k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992)

    Article  MATH  Google Scholar 

  2. Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 357–368. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness preserving reductions via cuckoo hashing. IACR Cryptology ePrint Archive 2012: 722 (2012)

    Google Scholar 

  4. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness preserving reductions via cuckoo hashing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 40–59. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, November 3-5, pp. 112–117 (1982)

    Google Scholar 

  6. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract). In: Proceedings of the 9th Annual ACM Symposium on Theory of Computing, Boulder, Colorado, USA, May 4-6, pp. 106–112 (1977)

    Google Scholar 

  7. Chandran, N., Garg, S.: Hardness preserving constructions of pseudorandom functions, revisited. IACR Cryptology ePrint Archive 2012: 616 (2012)

    Google Scholar 

  8. Cho, C., Lee, C.-K., Ostrovsky, R.: Equivalence of uniform key agreement and composition insecurity. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 447–464. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Goldreich, O.: Towards a theory of software protection. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 426–439. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  10. Goldreich, O.: Two remarks concerning the goldwasser-micali-rivest signature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  11. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of random functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  13. Jain, A., Pietrzak, K., Tentes, A.: Hardness preserving constructions of pseudorandom functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 369–382. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Kurosawa, K., Johansson, T., Stinson, D.R.: Almost \(k\)-wise independent sample spaces and their cryptologic applications. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 409–421. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luby, M.: Pseudorandomness and cryptographic applications. Princeton computer science notes. Princeton University Press (1996)

    Google Scholar 

  17. Luby, M., Rackoff, C.: A study of password security. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 392–397. Springer, Heidelberg (1988)

    Google Scholar 

  18. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–133. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Myers, S.: Black-box composition does not imply adaptive security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 189–206. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput. 22(4), 838–856 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of psuedo-random functions. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, October 23-25, pp. 170–181 (1995)

    Google Scholar 

  22. Pietrzak, K.: Composition does not imply adaptive security. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Pietrzak, K.: Composition implies adaptive security in minicrypt. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In: 20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October 29-31, pp. 175–182 (1979)

    Google Scholar 

  25. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, November 3-5, pp. 80–91 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishanth Chandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chandran, N., Garg, S. (2014). Balancing Output Length and Query Bound in Hardness Preserving Constructions of Pseudorandom Functions. In: Meier, W., Mukhopadhyay, D. (eds) Progress in Cryptology -- INDOCRYPT 2014. INDOCRYPT 2014. Lecture Notes in Computer Science(), vol 8885. Springer, Cham. https://doi.org/10.1007/978-3-319-13039-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13039-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13038-5

  • Online ISBN: 978-3-319-13039-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics