Abstract
We present a new side-channel attack path threatening state-of-the-art protected implementations of elliptic curves embedded scalar multiplications. Regular algorithms such as the double-and-add-always and the Montgomery ladder are commonly used to protect the scalar multiplication from simple side-channel analysis. Combining such algorithms with scalar and/or point blinding countermeasures lead to scalar multiplications protected from all known attacks. Scalar randomization, which consists in adding a random multiple of the group order to the scalar value, is a popular countermeasure due to its efficiency. Amongst the several curves defined for usage in elliptic curves products, the most used are those standardized by the NIST. As observed in several previous publications, the modulus, hence the orders, of these curves are sparse, primarily for efficiency reasons. In this paper, we take advantage of this specificity to present new attack paths which combine vertical and horizontal side-channel attacks to recover the entire secret scalar in state-of-the-art protected elliptic curve implementations.
Venelli: This work was carried out when the author was with INSIDE Secure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack on elliptic curves. In: Selected Areas in Cryptography (2013)
Bauer, A., Jaulmes, É.: Correlation analysis against protected SFM implementations of RSA. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 98–115. Springer, Heidelberg (2013)
Bernstein, D.J., Lange, T.: Explicit-formulas database. http://hyperelliptic.org/EFD/g1p/auto-shortw.html
Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)
Bernstein, D.J., Lange, T.: Safecurves: choosing safe curves for elliptic-curve cryptography. http://safecurves.cr.yp.to (accessed May 26, 2014)
Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Berlin Heidelberg (2002)
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)
Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)
Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers 53, 760–768 (2004)
Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 348–359. Springer, Heidelberg (2003)
Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)
Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V.: ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012)
Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)
Feix, B., Roussellet, M., Venelli, A.: Side-channel analysis on blinded regular scalar multiplications. IACR Cryptology ePrint Archive (2014)
Giraud, C., Verneuil, V.: Atomicity improvement for elliptic curve scalar multiplication. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 80–101. Springer, Heidelberg (2010)
Goundar, R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication on Weierstraß elliptic curves from co-z arithmetic. Journal of Cryptographic Engineering 1(2), 161–176 (2011)
Hanley, N., Kim, H., Tunstall, M.: Exploiting collisions in addition chain-based exponentiation algorithms. Cryptology ePrint Archive, Report 2012/485 (2012)
Joye, M.: Highly regular Right-to-left algorithms for scalar multiplication. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer, Heidelberg (2007)
Joye, M., Yen, S.M.: The Montgomery powering ladder. In: Kaliski, B., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2004)
Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)
Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)
Muller, F., Valette, F.: High-order attacks against the exponent splitting protection. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 315–329. Springer, Heidelberg (2006)
National Institute Standards and Technology: Digital Signature Standard (DSS). Publication 186–2 (2000)
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)
Rondepierre, F.: Revisiting atomic patterns for scalar multiplications on elliptic curves. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 171–186. Springer, Heidelberg (2014)
SEC2: Standards for Efficient Cryptography Group/Certicom Research. Recommanded Elliptic Curve Cryptography Domain Parameters (2000)
Smart, N., Oswald, E., Page, D.: Randomised representations. IET Information Security 2, 19–27(8) (2008)
Solinas, J.: Generalized Mersenne numbers. Technical report CORR-39, Dept. of C&O, University of Waterloo (1999)
Stebila, D., Thériault, N.: Unified point addition formulæ and side-channel attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 354–368. Springer, Heidelberg (2006)
Trichina, E., Bellezza, A.: Implementation of elliptic curve cryptography with built-in counter measures against side channel attacks. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 98–113. Springer, Heidelberg (2003)
Walter, C.D.: Sliding windows succumbs to Big Mac attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer, Heidelberg (2001)
Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Feix, B., Roussellet, M., Venelli, A. (2014). Side-Channel Analysis on Blinded Regular Scalar Multiplications. In: Meier, W., Mukhopadhyay, D. (eds) Progress in Cryptology -- INDOCRYPT 2014. INDOCRYPT 2014. Lecture Notes in Computer Science(), vol 8885. Springer, Cham. https://doi.org/10.1007/978-3-319-13039-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-13039-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13038-5
Online ISBN: 978-3-319-13039-2
eBook Packages: Computer ScienceComputer Science (R0)