The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse | SpringerLink
Skip to main content

The Nonlinear Schrödinger Equation

Singular Solutions and Optical Collapse

  • Textbook
  • © 2015

Overview

  • Provides a unique interdisciplinary treatment of the nonlinear Schrödinger equation, combining rigorous analysis, informal analysis, numerical methods and physics
  • Presents all the necessary physical background, and assumes only that the reader has taken an introductory class in partial differential equations
  • Carefully explains the theory, application and background of the nonlinear Schrödinger equation in nonlinear optics
  • Covers the theory of NLS collapse from the early 1960s and up to the present
  • Includes supplementary material: sn.pub/extras

Part of the book series: Applied Mathematical Sciences (AMS, volume 192)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book JPY 12869
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results.

The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics.

Gadi Fibich is a Professor of Applied Mathematics at Tel Aviv University.

“This book provides a clear presentation of the nonlinear Schrodinger equation and its applications from various perspectives (rigorous analysis, informal analysis, and physics). It will be extremely useful for students and researchers who enter this field.”

Frank Merle, Université de Cergy-Pontoise and Institut des Hautes Études Scientifiques, France

Similar content being viewed by others

Keywords

Table of contents (39 chapters)

  1. NLS in Nonlinear Optics I

  2. Rigorous Analysis

  3. Asymptotic Analysis of the Critical NLS

Reviews

“The Nonlinear Schrödinger Equation (NLS) theory was an object of great interest during last decades. … the present book includes almost all questions connected with theoretical and experimental investigations of the above mentioned matter during the years since 1960 until now. … the book abounds in recent results, facts and examples that makes it very interesting for the researchers who work actively in this field.” (Dimitar A. Kolev, zbMATH, 1351.35001, 2017)

“This monograph is devoted to the analysis of optical collapse modelled by the nonlinear Schrödinger (NLS) equation. … The book contains everything a modern reader wants to learn about the NLS equation. … The book is a nice addition to the existing literature on the subject of the NLS equation. New and experienced researchers alike may use this text to get the latest informationabout the state-of-the-art in the field.” (Dmitry E. Pelinovsky, Mathematical Reviews, April, 2016)

Authors and Affiliations

  • School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

    Gadi Fibich

About the author

Gadi Fibich is a Professor of Applied Mathematics at Tel Aviv University.

Bibliographic Information

Publish with us