Abstract
In this review paper, we present some recent results on the characterization of Functional Dependencies and variations with the formalism of Pattern Structures and Formal Concept Analysis.
Although these dependencies have been paramount in database theory, they have been used in different fields: artificial intelligence and knowledge discovery, among others.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baixeries, J.: Lattice Characterization of Armstrong and Symmetric Dependencies (Ph.D. Thesis). Universitat Politècnica de Catalunya, (2007)
Baixeries, J., Balcázar, J.L.: Discrete deterministic data mining as knowledge compilation. In: Proceedings of Workshop on Discrete Mathematics and Data Mining - SIAM (2003)
Baixeries, J., Balcázar, J.L.: A lattice representation of relations, multivalued dependencies and armstrong relations. In: ICCS, pp. 13–26 (2005)
Baixeries, J., Kaytoue, M., Napoli, A.: Computing functional dependencies with pattern structures. In: Szathmary, L., Priss, U., (eds.) CLA. CEUR Workshop Proceedings, vol. 972, pp. 175–186. CEUR-WS.org (2012)
Baixeries, J., Kaytoue, M., Napoli, A.: Computing similarity dependencies with pattern structures. In: CLA, pp. 33–44 (2013)
Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal concept analysis with pattern structures. Ann. Math. Artif. Intell. 72, 1–21 (2014)
Baudinet, M., Chomicki, J., Wolper, P.: Constraint-generating dependencies. J. Comput. Syst. Sci. 59(1), 94–115 (1999)
Bělohlávek, R., Vychodil, V.: Data tables with similarity relations: functional dependencies, complete rules and non-redundant bases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer, Heidelberg (2006)
Bertossi, L., Kolahi, S., Lakshmanan, L.V.S.: Data cleaning and query answering with matching dependencies and matching functions. In: Proceedings of the 14th International Conference on Database Theory, ICDT ’11, pp. 268–279. ACM, New York (2011)
Fan, W., Gao, H., Jia, X., Li, J., Ma, S.: Dynamic constraints for record matching. The VLDB J. 20(4), 495–520 (2011)
Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)
Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)
Graetzer, G., Davey, B., Freese, R., Ganter, B., Greferath, M., Jipsen, P., Priestley, H., Rose, H., Schmidt, E., Schmidt, S., Wehrung, F., Wille, R.: General Lattice Theory. Freeman, San Francisco (1971)
Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95, 5–18 (1986)
Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: an efficient algorithm for discovering functional and approximate dependencies. Comput. J. 42(2), 100–111 (1999)
Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. In: IJCAI, pp. 1342–1347 (2011)
Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)
Kuznetsov, S.: Mathematical aspects of concept analysis. J. Math. Sci. 80(2), 1654–1698 (1996)
Kuznetsov, S.O.: Fitting pattern structures to knowledge discovery in big data. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 254–266. Springer, Heidelberg (2013)
Kuznetsov, S.O., Poelmans, J.: Knowledge representation and processing with formal concept analysis. Wiley Interdisc. Rew: Data Min. Knowl. Discov. 3(3), 200–215 (2013)
Lopes, S., Petit, J.-M., Lakhal, L.: Functional and approximate dependency mining: database and fca points of view. J. Exp. Theor. Artif. Intell. 14(2–3), 93–114 (2002)
Medina, R., Nourine, L.: A unified hierarchy for functional dependencies, conditional functional dependencies and association rules. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 98–113. Springer, Heidelberg (2009)
Nedjar, S., Pesci, F., Lakhal, L., Cicchetti, R.: The agree concept lattice for multidimensional database analysis. In: Jäschke, R. (ed.) ICFCA 2011. LNCS, vol. 6628, pp. 219–234. Springer, Heidelberg (2011)
Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: a survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013)
Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis in knowledge processing: aD survey on models and techniques. Expert Syst. Appl. 40(16), 6601–6623 (2013)
Simovici, D., Jaroszewicz, S.: An axiomatization of partition entropy. IEEE Trans. Inf. Theory 48(7), 2138–2142 (2002)
Simovici, D.A., Cristofor, D., Cristofor, L.: Impurity measures in databases. Acta Inf. 38(5), 307–324 (2002)
Song, S., Chen, L.: Differential dependencies: reasoning and discovery. ACM Trans. Database Syst. 36(3), 16:1–16:41 (2011)
Song, S., Chen, L.: Efficient discovery of similarity constraints for matching dependencies. Data Knowl. Eng. 87, 146–166 (2013)
Song, S., Chen, L., Yu, P.S.: Comparable dependencies over heterogeneous data. The VLDB J. 22(2), 253–274 (2013)
Ullman, J.: Principles of Database Systems and Knowledge-Based Systems, vol. 1–2. Computer Science Press, Rockville (MD) (1989)
Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge discovery and data mining: the new challenges. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)
Wille, R.: Why can concept lattices support knowledge discovery in databases? J. Exp. Theor. Artif. Intell. 14(2–3), 81–92 (2002)
Wyss, C.M., Giannella, C.M., Robertson, E.L.: FastFDs: a heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances - extended abstract. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 101–110. Springer, Heidelberg (2001)
Yao, H., Hamilton, H.J.: Mining functional dependencies from data. Data Min. Knowl. Discov. 16(2), 197–219 (2008)
Acknowledgments
This research work has been supported by the Spanish Ministry of Education and Science (project TIN2008-06582-C03-01), EU PASCAL2 Network of Excellence, and by the Generalitat de Catalunya (2009-SGR-980 and 2009-SGR-1428) and AGAUR (grant 2010PIV00057).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Baixeries, J., Kaytoue, M., Napoli, A. (2014). Characterization of Database Dependencies with FCA and Pattern Structures. In: Ignatov, D., Khachay, M., Panchenko, A., Konstantinova, N., Yavorsky, R. (eds) Analysis of Images, Social Networks and Texts. AIST 2014. Communications in Computer and Information Science, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-319-12580-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-12580-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12579-4
Online ISBN: 978-3-319-12580-0
eBook Packages: Computer ScienceComputer Science (R0)